1. 1.

    Livsmedelsverket, 2017. De svenska kostråden. Hitta ditt sätt. Att äta grönare, lagom mycket och röra på dig.

    https://www.livsmedelsverket.se/globalassets/publikationsdatabas/broschyrer/kostraed_webb.pdf
  2. 2.

    Bradbury KE, Balkwill A, Spencer EA, Roddam AW, Reeves GK, Green J, Key TJ, Beral V, Pirie K, 2014. The Million Women Study C: Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. British Journal of Cancer 110(9):2321-2326.

    https://doi.org/10.1038/bjc.2014.148
  3. 3.

    Kesse-Guyot E, Baudry J, Assmann KE, Galan P, Hercberg S, Lairon D, 2017. Prospective association between consumption frequency of organic food and body weight change, risk of overweight or obesity: results from the NutriNet-Santé Study. British Journal of Nutrition 117(2):325-334.

    https://doi.org/10.1017/S0007114517000058
  4. 4.

    Kesse-Guyot E, Péneau S, Méjean C, Szabo de Edelenyi F, Galan P, Hercberg S, Lairon D, 2013. Profiles of Organic Food Consumers in a Large Sample of French Adults: Results from the Nutrinet-Santé Cohort Study. PLoS ONE 8(10):e76998.

    https://doi.org/10.1371/journal.pone.0076998
  5. 5.

    Baudry J, Lelong H, Adriouch S, Julia C, Allès B, Hercberg S, Touvier M, Lairon D, Galan P, Kesse-Guyot E, 2018. Association between organic food consumption and metabolic syndrome: cross-sectional results from the NutriNet-Santé study. European journal of nutrition 57(7):2477-2488.

    https://doi.org/10.1007/s00394-017-1520-1
  6. 6.

    Baudry J, Assmann KE, Touvier M, Allès B, Seconda L, Latino-Martel P, Ezzedine K, Galan P, Hercberg S, Lairon D et al., 2018. Association of frequency of organic food consumption with cancer risk: findings from the NutriNet-Santé prospective cohort study. JAMA internal medicine 178(12):1597-1606.

    https://doi.org/10.1001/jamainternmed.2018.4357
  7. 7.

    Mie A, Andersen HR, Gunnarsson S, Kahl J, Kesse-Guyot E, Rembiałkowska E, Quaglio G, Grandjean P, 2017. Human health implications of organic food and organic agriculture: a comprehensive review. Environmental Health 16(1):111.

    https://doi.org/10.1186/s12940-017-0315-4
  8. 8.

    Hemler EC, Chavarro JE, Hu FB, 2018. Organic foods for cancer prevention—worth the investment? JAMA Internal Medicine 178(12):1606-1607.

    https://doi.org/10.1001/jamainternmed.2018.4363
  9. 9.

    Barański M, Średnicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, Benbrook C, Biavati B, Markellou E, Giotis C et al., 2014. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. British Journal of Nutrition 112(05):794-811.

    https://doi.org/10.1017/S0007114514001366
  10. 10.

    Smith-Spangler C, Brandeau ML, Hunter GE, Bavinger JC, Pearson M, Eschbach PJ, Sundaram V, Liu H, Schirmer P, Stave C et al., 2012. Are Organic Foods Safer or Healthier Than Conventional Alternatives? A Systematic Review. Annals of Internal Medicine 157(5):348-366.

    https://doi.org/10.7326/0003-4819-157-5-201209040-00007
  11. 11.

    Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A, 2012. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants & Redox Signaling 18(14):1818-1892.

    https://dx.doi.org/10.1089%2Fars.2012.4581
  12. 12.

    Cubero-Leon E, De Rudder O, Maquet A, 2018. Metabolomics for organic food authentication: Results from a long-term field study in carrots. Food Chemistry 239:760-770.

    https://dx.doi.org/10.1016%2Fj.foodchem.2017.06.161
  13. 13.

    Mie A, Laursen K, Åberg KM, Forshed J, Lindahl A, Thorup-Kristensen K, Olsson M, Knuthsen P, Larsen E, Husted S, 2014. Discrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics. Analytical and Bioanalytical Chemistry 406(12):2885-2897.

    https://doi.org/10.1007/s00216-014-7704-0
  14. 14.

    Bonte A, Neuweger H, Goesmann A, Thonar C, Mäder P, Langenkämper G, Niehaus K, 2014. Metabolite profiling on wheat grain to enable a distinction of samples from organic and conventional farming systems. Journal of the Science of Food and Agriculture 94(13):2605-2612.

    https://doi.org/10.1002/jsfa.6566
  15. 15.

    Askegaard M, Olesen JE, Rasmussen IA, Kristensen K, 2011. Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management. Agriculture, Ecosystems & Environment 142(3-4):149-160.

    https://doi.org/10.1016/j.agee.2011.04.014
  16. 16.

    Treutter D, 2010. Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints. International Journal of Molecular Sciences 11(3):807-857.

    https://doi.org/10.3390/ijms11030807
  17. 17.

    Średnicka-Tober D, Barański M, Seal CJ, Sanderson R, Benbrook C, Steinshamn H, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Eyre M, 2016. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta-and redundancy analyses. British Journal of Nutrition 115(6):1043-1060.

    https://doi.org/10.1017/S0007114516000349
  18. 18.

    Fall N, Emanuelson U, 2011. Fatty acid content, vitamins and selenium in bulk tank milk from organic and conventional Swedish dairy herds during the indoor season. Journal of Dairy Research 78(3):287-292.

    https://doi.org/10.1017/S0022029911000392
  19. 19.

    Średnicka-Tober D, Barański M, Seal C, Sanderson R, Benbrook C, Steinshamn H, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Eyre M et al, 2016. Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. British Journal of Nutrition 115(6):1043-1060.

    https://doi.org/10.1017/S0007114516000349
  20. 20.

    EU Commission, 2015. Commission Implementing Regulation (EU) 2015/861 of 3 June 2015 concerning the authorisation of potassium iodide, calcium iodate anhydrous and coated granulated calcium iodate anhydrous as feed additives for all animal species.

    http://data.europa.eu/eli/reg_impl/2015/861/oj
  21. 21.

    EFSA Panel on Additives Products or Substances used in Animal Feed, 2013. Scientific Opinion on the safety and efficacy of iodine compounds (E2) as feed additives for all animal species: calcium iodate anhydrous and potassium iodide, based on a dossier submitted by Ajay Europe SARL. EFSA Journal 11(2):3099.

    https://doi.org/10.2903/j.efsa.2013.3099
  22. 22.

    Toledo P, Andrén A, Björck L, 2002 Composition of raw milk from sustainable production systems. International dairy journal 12(1):75-80.

    https://doi.org/10.1016/S0958-6946(01)00148-0
  23. 23.

    Lazarus JH, 2014. Iodine status in Europe in 2014. European thyroid journal 3(1):3-6.

    https://dx.doi.org/10.1159%2F000358873
  24. 24.

    Gartner R, 2016. Recent data on iodine intake in Germany and Europe. Journal of Trace Elements in Medicine and Biology 37:85-89.

    https://doi.org/10.1016/j.jtemb.2016.06.012
  25. 25.

    Andersson M, de Benoist B, Delange F, Zupan J, 2007. Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation. Public health nutrition 10(12A):1606-1611.

    https://doi.org/10.1017/S1368980007361004
  26. 26.

    Livsmedelsverket, 2012. Riksmaten – vuxna 2010–11. Livsmedels- och näringsintag bland vuxna i Sverige. Uppsala.

    https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2011/riksmaten_2010_20111.pdf
  27. 27.

    Medina‐Pastor P, Triacchini G, 2020. The 2018 European Union report on pesticide residues in food. EFSA Journal 18(4):6057, 103 pp.

    https://doi.org/10.2903/j.efsa.2020.6057
  28. 28.

    Livsmedelsverket, 2019. Kontroll av bekämpningsmedelsrester i livsmedel 2017.

    https://www.livsmedelsverket.se/bestall-ladda-ner-material/sok-publikationer/artiklar/2019/l-2019-nr-16
  29. 30.

    European Food Safety Authority, 2018. Monitoring data on pesticide residues in food: results on organic versus conventionally produced food. EFSA Supporting Publications 15(4):1397E.

    https://doi.org/10.2903/sp.efsa.2018.EN-1397
  30. 31.

    Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, Whyatt R, 2011. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environmental Health Perspectives 119(8):1196-1201.

    https://doi.org/10.1289/ehp.1003160
  31. 32.

    Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, Trujillo C, Johnson C, Bradman A, Barr DB et al., 2011. Prenatal Exposure to Organophosphate Pesticides and IQ in 7-Year-Old Children. Environmental Health Perspectives 119(8):1189-1195.

    https://doi.org/10.1289/ehp.1003185
  32. 33.

    Engel SM, Wetmur J, Chen J, Zhu C, Barr DB, Canfield RL, Wolff MS, 2011. Prenatal Exposure to Organophosphates, Paraoxonase 1, and Cognitive Development in Childhood. Environmental Health Perspectives 119(8):1182-1188.

    https://doi.org/10.1289/ehp.1003183
  33. 34.

    Drew D, britton W, Christensen C, Irwin W, Lowit A, 2014. Chlorpyrifos: Revised Human Health Risk Assessment for Registration Review.

    https://www.regulations.gov/document?D=EPA-HQ-OPP-2008-0850-0195
  34. 35.

    Britton W, Drew D, Holman E, Lowe K, Lowit A, Rickard K, 2016. Chlorpyrifos: Revised Human Health Risk Assessment for Registration Review.

    https://www.regulations.gov/document?D=EPA-HQ-OPP-2008-0850-0195
  35. 36.

    Mie A, Ruden C, Grandjean P, 2018. Safety of Safety Evaluation of Pesticides: developmental neurotoxicity of chlorpyrifos and chlorpyrifos-methyl. Environmental Health 17(1):77.

    https://doi.org/10.1186/s12940-018-0421-y
  36. 37.

    European Commission, 2020. Commission Implementing Regulation (EU) 2020/18 of 10 January 2020 concerning the non-renewal of the approval of the active substance chlorpyrifos, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011.

    http://data.europa.eu/eli/reg_impl/2020/18/oj
  37. 38.

    Bellanger M, Demeneix B, Grandjean P, Zoeller RT, Trasande L, 2015. Neurobehavioral Deficits, Diseases and Associated Costs of Exposure to Endocrine Disrupting Chemicals in the European Union. J Clin Endocr Metab 100(4):1256-1266.

    https://doi.org/10.1210/jc.2014-4323
  38. 39.

    Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T et al, 2017. Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemia. EFSA Journal 15(3):e04691.

    https://doi.org/10.2903/j.efsa.2017.4691
  39. 40.

    Andersen HR, Debes F, Wohlfahrt-Veje C, Murata K, Grandjean P, 2015. Occupational pesticide exposure in early pregnancy associated with sex-specific neurobehavioral deficits in the children at school age. Neurotoxicol Teratol 47:1-9.

    https://doi.org/10.1016/j.ntt.2014.10.006
  40. 41.

    Andersen HR, Schmidt IM, Grandjean P, Jensen TK, Budtz-Jorgensen E, Kjaerstad MB, Baelum J, Nielsen JB, Skakkebaek NE, Main KM, 2008. Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ Health Perspect 116(4):566-572.

    https://dx.doi.org/10.1289%2Fehp.10790
  41. 42.

    Wohlfahrt-Veje C, Andersen HR, Jensen TK, Grandjean P, Skakkebaek NE, Main KM, 2012. Smaller genitals at school age in boys whose mothers were exposed to non-persistent pesticides in early pregnancy. International Journal of Andrology 35(3):265-272.

    https://doi.org/10.1111/j.1365-2605.2012.01252.x
  42. 43.

    Wohlfahrt-Veje C, Andersen HR, Schmidt IM, Aksglaede L, Sorensen K, Juul A, Jensen TK, Grandjean P, Skakkebaek NE, Main KM, 2012. Early breast development in girls after prenatal exposure to non-persistent pesticides. International Journal of Andrology 35(3):273-282.

    https://doi.org/10.1111/j.1365-2605.2011.01244.x
  43. 44.

    Wohlfahrt-Veje C, Main K, Schmidt I, Boas M, Jensen T, Grandjean P, Skakkebaek N, Andersen H, 2011. Lower birth weight and increased body fat at school age in children prenatally exposed to modern pesticides: a prospective study. Environ Health 10(1):79.

    https://dx.doi.org/10.1186%2F1476-069X-10-79
  44. 45.

    European Food Safety Authority (EFSA), 2012. Cadmium dietary exposure in the European population. EFSA Journal 10(1):2551.

    https://doi.org/10.2903/j.efsa.2012.2551
  45. 46.

    Akesson A, Barregard L, Bergdahl IA, Nordberg GF, Nordberg M, Skerfving S, 2014. Non-renal effects and the risk assessment of environmental cadmium exposure. Environ Health Perspect 122(5):431-438.

    https://doi.org/10.1289/ehp.1307110
  46. 47.

    Grant CA, 2015. Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Phosphate in Soils: Interaction with Micronutrients, Radionuclides and Heavy Metals 2:123.

    https://www.taylorfrancis.com/books/e/9781351228909/chapters/10.1201/9781351228909-9
  47. 48.

    Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mäder P, Stolze M, Smith P, Scialabba NE-H et al, 2012. Enhanced top soil carbon stocks under organic farming. PNAS 109(44):18226-18231.

    https://doi.org/10.1073/pnas.1209429109
  48. 49.

    Fließbach A, Oberholzer H-R, Gunst L, Mäder P, 2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems & Environment 118(1-4):273-284.

    http://doi.org/10.1016/j.agee.2006.05.022
  49. 50.

    SCB, 2019. Försäljning av mineralgödsel för jord- och trädgårdsbruk under 2017/18.

    https://www.scb.se/contentassets/1ced554a5cf742c38b241f4ceb6d220d/mi1002_2017b18_sm_mi30sm1901.pdf
  50. 51.

    Karlsson I, Friberg H, Steinberg C, Persson P, 2014. Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One 9(11):e111786.

    https://doi.org/10.1371/journal.pone.0111786
  51. 52.

    Karlsson I, Friberg H, Kolseth AK, Steinberg C, Persson P, 2017. Organic farming increases richness of fungal taxa in the wheat phyllosphere. Molecular ecology 26(13):3424-3436.

    https://doi.org/10.1111/mec.14132
  52. 53.

    European Food Safety Authority (EFSA), 2017. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 15(9):4718.

    https://doi.org/10.2903/j.efsa.2017.4718
  53. 55.

    Österberg J, Wingstrand A, Nygaard Jensen A, Kerouanton A, Cibin V, Barco L, Denis M, Aabo S, Bengtsson B, 2016. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries. PLoS ONE 11(6):e0157049.

    https://doi.org/10.1371/journal.pone.0157049
  54. 56.

    Cully M, 2014. PUBLIC HEALTH The politics of antibiotics. Nature 509(7498):S16-S17.

    https://doi.org/10.1038/509S16a
  55. 57.

    European Food Safety Authority (EFSA), 2017. ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA Journal 15(7):4872.

    https://doi.org/10.2903/j.efsa.2017.4872
  56. 58.

    Gunnarsson S, Nordlund Othén J, 2017. Klok antibiotikaanvändning till våra lantbruksdjur - Kan ekologisk djurhållning visa vägen för att minska risken för resistens? SLU Ekologisk produktion och konsumtion (Epok), Sveriges lantbruksuniversitet.

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/antibiotika.pdf
  57. 59.

    Fromm S, Beißwanger E, Käsbohrer A, Tenhagen B-A, 2014. Risk factors for MRSA in fattening pig herds – A meta-analysis using pooled data. Preventive Veterinary Medicine 117(1):180-188.

    https://doi.org/10.1016/j.prevetmed.2014.08.014
  58. 60.

    Hegelund L, 2006. Medicinforbrug og dødelighed i økologisk og konventionel slagtesvineproduktion. Sundhed og medicinforbrug hos økologiske og konventionelle slagtesvin 2006:13-16.

    https://pure.au.dk/portal/da/persons/lene-hegelund(1177828f-1a91-4c49-84e4-4640d83a58f1)/publications/medicinforbrug-og-doedelighed-i-oekologisk-og-konventionel-slagtesvineproduktion(506b3910
  59. 61.

    Wingstrand A, Struve T, Lundsby K, Vigre H, Emborg HD, Sørensen AIV, Jensen VF: Antibiotikaresistens og -forbrug i slagtesvineproduktionen. In: Fremtidens fødevaresikkerhed- Nye veje mod sikrere kød i Danmark. Center for Bioetik og Risikovurdering, Denmark; 2010: 98-106.

  60. 62.

    Bennedsgaard TW, Klaas IC, Vaarst M, 2010. Reducing use of antimicrobials - Experiences from an intervention study in organic dairy herds in Denmark. Livestock Science 131:183-192.

    https://doi.org/10.1016/j.livsci.2010.03.018
  61. 63.

    Kuipers A, Koops W, Wemmenhove H, 2016. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. Journal of dairy science 99(2):1632-1648.

    https://doi.org/10.3168/jds.2014-8428
  62. 64.

    FAOSTAT, 2019. Pesticides us. Food and Agriculture Organization of the United Nations (FAOSTAT). 

    http://www.fao.org/faostat/en/#data/RP
  63. 65.

    Schreinemachers P, Tipraqsa P, 2012. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37:616–626. 

    https://doi.org/10.1016/j.foodpol.2012.06.003
  64. 66.

    Regeringen, 2019. Sveriges nationella handlingsplan för hållbar användning av växtskyddsmedel för perioden 2019-2022.

    https://s3.eu-north-1.amazonaws.com/ekofakta/uploads/files/466e6331-6e17-4888-aa62-a22897c29282.pdf
  65. 67.

    SCB, 2018. Växtskyddsmedel i jord- och trädgårdsbruket 2017. Användning i grödor. Statistiska meddelanden MI 31 SM 1802, Statistiska Centralbyrån. 

    https://www.scb.se/contentassets/5cb7b388b27e487a883a7e079f8cd7b6/mi0502_2016i20_sm_mi31sm1802.pdf
  66. 68.

    Ascard J, Löfkvist K, Mie A, Wivstad A, 2017. Växtskyddsmedel i ekologisk produktion - användning och risker, SLU Ekologisk produktion och konsumtion (Epok), Sveriges Lantbruksuniversitet.

    https://pub.epsilon.slu.se/15706/1/ascard_et_al_181015.pdf
  67. 69.

    EG, 2009. Europaparlamentets och rådets direktiv 2009/128/EG. EU:s åtgärder för att uppnå hållbar användning av bekämpningsmedel.

     

    https://eur-lex.europa.eu/legal-content/SV/LSU/?uri=CELEX:32009L0128
  68. 70.

    SIGILL kvalitetssystem AB 2023.

    https://www.sigill.se/
  69. 71.

    Kemikalieinspektionen, 2023. Växtskyddsmedel.

    https://www.kemi.se/bekampningsmedel/vaxtskyddsmedel
  70. 72.

    Jordbruksverket 2023. Allmänkemikalier 2023 

    https://webbutiken.jordbruksverket.se/sv/artiklar/allmankemikalier.html
  71. 73.

    EU, 2018. Europaparlamentets och Rådets förordning (EU) 2018/848 om ekologisk produktion och märkning av ekologiska produkter.

    https://eur-lex.europa.eu/legal-content/SV/TXT/PDF/?uri=CELEX:02018R0848-20180614&qid=1568104702739&from=SV
  72. 74.

    Jordbruksverket, 2023. Ekologisk växtodling 2022. Omställda arealer och arealer under omställning. Sveriges officiella statistik, Statistiska meddelanden, JO 13 SM 1901.

    https://jordbruksverket.se/om-jordbruksverket/jordbruksverkets-officiella-statistik/jordbruksverkets-statistikrapporter/statistik/2023-05-16-ekologisk-vaxtodling-2022
  73. 75.

    Jordbruksverket, 2023. Växtskyddsmedel i ekologisk produktion

    https://webbutiken.jordbruksverket.se/sv/artiklar/ovr491.html
  74. 76.

    Socorro J, Durand A, Temime-Roussel B, Gligorovski S, Wortham H, Quivet E, 2016. The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue. Scientific Reports 6:33456. 

    https://doi.org/10.1038/srep33456
  75. 77.

    Åkesson M et al, 2014. On the scope and management of pesticide pollution of Swedish groundwater resources: The Scanian example. Ambio 44:226–238. 

    https://doi.org/10.1007/s13280-014-0548-1
  76. 78.

    CKB, 2020. Nationell miljöövervakning av bekämpningsmedel (växtskyddsmedel) i miljön, Institutionen för vatten och miljö, Sveriges Lantbruksuniversitet.

    https://www.slu.se/centrumbildningar-och-projekt/SLU-Centrum-for-kemiska-bekampningsmedel-i-miljon/information-om-bekampningsmedel-i-miljon1/
  77. 79.

    Nanos T., Gutfreund C., Lindström, B. 2019. Resultat från miljöövervakningen av bekämpningsmedel (växtskyddsmedel). Årssammanställning 2019. Sveriges lantbruksuniversitet, Institutionen för vatten och miljö. Rapport 2020:8

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/mo-rapporter/arsrapport-2019-miljoovervakningen-bek_final.pdf
  78. 80.

    Lindström B, Larsson M, Boye K, Gönczi M, Kreuger J, 2015. Resultat från miljöövervakningen av bekämpningsmedel (växtskyddsmedel). Långtidsöversikt och trender 2002-2012 för ytvatten och sediment.  Rapport 2015:5. Institutionen för vatten och miljö, Sveriges lantbruksuniversitet.

    https://pub.epsilon.slu.se/12303/11/lindstrom_b_etal_150630.pdf
  79. 81.

    Goedkoop W, Kahlert M, 2018. Undersökning av pesticidorsakade effekter på bentiska organismsamhällen i jord brukspåverkade vattendrag. CKB rapport 2018:2, Kompentenscentrum för kemiska bekämpningsmedel, Sveriges lantbruksuniversitet.

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/ckb-rapporter/goedkoop_kahlert_pesticidrapport-20182_slutversion.pdf
  80. 82.

    Schäfer RB et al, 2007. Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Env 382:272–285. 

    https://doi.org/10.1016/j.scitotenv.2007.04.040
  81. 83.

    Rundlöf M, Lundin O, Bommarco R, 2012. Växtskyddsmedlens påverkan på biologisk mångfald i jordbrukslandskapet. CKB rapport 2012:2. Kompetenscentrum för Kemisk Bekämpning, Sveriges lantbruksuniversitet.

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/ckb-rapporter/ckb-biologisk-mangfald-slutlig-c.pdf
  82. 84.

    CKB, 2020. Miljöeffekter av bekämpningsmedel. Kompetenscentrum för kemisk bekämpning (CKB), Sveriges lantbruksuniversitet.

    https://www.slu.se/centrumbildningar-och-projekt/SLU-Centrum-for-kemiska-bekampningsmedel-i-miljon/information-om-bekampningsmedel-i-miljon1/exponering-och-miljoeffekter/
  83. 85.

    Geiger F et al, 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology 11:97–105.

    https://doi.org/10.1016/j.baae.2009.12.001
  84. 86.

    Tuck SL, Winqvist C, Mota F, Ahnström J, Turnbull LA, Bengtsson J, 2014. Land‐use intensity and the effects of organic farming on biodiversity: a hierarchical meta‐analysis. J Appl Ecol 51: 746-755.

    https://doi.org/10.1111/1365-2664.12219
  85. 87.

    Kühne S et al, 2016. Status Quo der Anwendung kupferhaltiger Pflanzenschutzmittel in der deutschen Landwirtschaft und dem Gartenbau. Journal für Kulturpflanzen 68.7: 189-196.

    https://doi.org/10.5073/JfK.2016.07.01
  86. 88.

    Kronqvist M, Johansson E, Kolmodin-Hedman B, Öman H, Svartengren M, van Hage-Hamsten M, 2005. IgE-sensitization to predatory mites and respiratory symptoms in Swedish greenhouse workers. European Journal of allergy and clinical immunology 60:521-526.

    https://doi.org/10.1111/j.1398-9995.2004.00687.x
  87. 89.

    Seufert V, Ramankutty N, 2017.  Many shades of grey–The context-dependent performance of organic agriculture. Sci Adv 3:e1602638

    https://doi.org/10.1126/sciadv.1602638
  88. 90.

    Barbieri P, Pellerin S, Nesme T, 2017. Comparing crop rotations between organic and conventional farming. Nature Scientific Reports 7:13761

    https://doi.org/10.1038/s41598-017-14271-6
  89. 91.

    Rasse D, Rumpel C, Dignac M-F, 2005. Is soil carbon mostly root carbon? Mechanisms for specific stabilization. Plant and Soil 269:341-356.

    https://doi.org/10.1007/s11104-004-0907-y
  90. 92.

    Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L, 2011. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems & Environment 141(1–2):184-192.

    https://doi.org/10.1016/j.agee.2011.02.029
  91. 93.

    Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA, 2010. Positive effects of organic farming on below‐ground mutualists: large‐scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist 186:968-979.

    https://doi.org/10.1111/j.1469-8137.2010.03230.x
  92. 94.

    Gosling P, Hodge A, Goodlass G, Bending GD, 2006. Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems & Environment 113(1–4):17-35.

    https://doi.org/10.1016/j.agee.2005.09.009
  93. 95.

    Siegrist S, Schaub D, Pfiffner L, Mäder P, 1998. Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agriculture, Ecosystems & Environment 69(3):253-264.

    https://doi.org/10.1016/S0167-8809(98)00113-3
  94. 96.

    Birkhofer K et al, 2008. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry. 40(9):2297-2308.

    https://doi.org/10.1016/j.soilbio.2008.05.007
  95. 97.

    Eriksson J, Mattson L, Söderström M, 2010. Tillståndet i svensk åkermark och gröda, data från 2001-2007. Rapport, Naturvårdsverket.

    http://urn.kb.se/resolve?urn=urn:nbn:se:naturvardsverket:diva-1733
  96. 98.

    Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mäder P, Stolze M, Smith P, El-Hage Scialabba N, Niggli U, 2012. Enhanced top soil carbon stocks under organic farming. PNAS October 30 109(44):18226-18231.

    https://doi.org/10.1073/pnas.1209429109
  97. 99.

    Haddaway NR, Hedlund K, Jackson LE, Kätterer T, Lugato E, Thomsen IK, Jørgensen HB, Isberg P-E, 2017. How does tillage intensity a ect soil organic carbon? A systematic review. Environ Evid 6:30.

    https://doi.org/10.1186/s13750-017-0108-9
  98. 100.

    Kallenbach CM, Frey SD, Grandy AS, 2018. Author Correction: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 9:3929.

    https://doi.org/10.1038/s41467-018-06427-3
  99. 101.

    Liang C, Amelung W, Lehmann J, Kästner M, 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Change Biol 25:3578–3590. 

    https://doi.org/10.1111/gcb.14781
  100. 102.

    Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A, 2017. Organic farming enhances soil microbial abundance and activity - A meta-analysis and meta-regression. PLoS ONE 12(7):e0180442.

    https://doi.org/10.1371/journal.pone.0180442
  101. 103.

    Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U, 2002. Soil Fertility and Biodiversity in Organic Farming. Science 296(5573):1694-1697.

    https://doi.org/10.1126/science.1071148
  102. 104.

    Reganold JP, Wachter JM, 2016. Organic agriculture in the twenty-first century. Nature Plants 2:15221.

    https://doi.org/10.1038/nplants.2015.221
  103. 105.

    Schader C, Stolze M, Gattinger A, 2012. Environmental performance of organic farming. Green Technologies in Food Production and Processing, 183 Food Engineering Series, Boye JI & Arcand Y (eds.).

    https://doi.org/10.1007/978-1-4614-1587-9_8
  104. 106.

    Schjønning P, Elmholt S, Munkholm LJ, Debosz K, 2002. Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management. Agriculture, Ecosystems and Environment 88:195-214.

    https://doi.org/10.1016/S0167-8809(01)00161-X
  105. 108.

    Röös E, 2019. Kor och klimat. EPOK - Centrum för ekologisk produktion och konsumtion, Sveriges lantbruksuniversitet.

    https://www.slu.se/epok
  106. 109.

    Smith P, House JI, Bustamante M et al., 2016. Global change pressures on soils from land use and management. Glob Change Biol 22:1008-1028.

    https://doi.org/10.1111/gcb.13068
  107. 110.

    Tuomisto HL, Hodge ID, Riordan P, Macdonald DW, 2012. Does organic farming reduce environmental impacts? A meta-analysis of European research. Journal of Environmental Management 112:309-320

    https://doi.org/10.1016/j.jenvman.2012.08.018
  108. 111.

    Williams A, HedlundK, 2013. Indicators of soil ecosystem services in conventional and organic arable fields along a gradient of landscape heterogeneity in southern Sweden. Applied Soil Ecology 65:1-7.

    https://doi.org/10.1016/j.apsoil.2012.12.019
  109. 112.

    Wivstad M, Salomon E, Spångberg J, Jönsson H, 2009. Ekologisk produktion – möjligheter att minska övergödning. Centrum för uthålligt lantbruk (CUL), Sveriges lantbruksuniversitet.

    https://www.slu.se/centrumbildningar-och-projekt/epok-centrum-for-ekologisk-produktion-och-konsumtion/publikationer/publikationer-fran-cul-centrum-for-uthalligt-lantbruk/
  110. 113.

    Blakemore, R, 2018. Critical decline of earthworms from organic origins under Intensive, humic SOM-depleting agriculture. Soil Systems 2(2):33.

    https://doi.org/10.3390/soilsystems2020033
  111. 114.

    Dainese et al., 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances 5:10.

    https://doi.org/10.1126/sciadv.aax0121
  112. 115.

    Fraanje, W. (2018). What is the land sparing-sharing continuum? (Foodsource: building blocks). Food Climate Research Network, University of Oxford.

    https://www.foodsource.org.uk/building-blocks/what-land-sparing-sharing-continuum
  113. 116.

    Galván, G. A., Parádi, I., Burger, K., Baar, J., Kuyper, T. W., Scholten, O. E., & Kik, C. (2009). Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza, 19(5), 317–328.

    https://doi.org/10.1007/s00572-009-0237-2
  114. 117.

    P. Gosling, A. Hodge, G. Goodlass, G.D. Bending, Arbuscular mycorrhizal fungi and organic farming, Agriculture, Ecosystems & Environment, Volume 113, Issues 1–4, 2006, Pages 17-35, ISSN 0167-8809,

    https://doi.org/10.1016/j.agee.2005.09.009
  115. 118.

    Ulrich Irmler, Changes in earthworm populations during conversion from conventional to organic farming, Agriculture, Ecosystems & Environment, Volume 135, Issue 3, 2010, Pages 194-198, ISSN 0167-8809

    https://doi.org/10.1016/j.agee.2009.09.008
  116. 119.

    Mueller, C., de Baan, L. & Koellner, T. Comparing direct land use impacts on biodiversity of conventional and organic milk—based on a Swedish case study. Int J Life Cycle Assess 19, 52–68 (2014)

    https://doi.org/10.1007/s11367-013-0638-5
  117. 120.

    Lukas Pfiffner, Henryk Luka, Earthworm populations in two low-input cereal farming systems, Applied Soil Ecology,Volume 37, Issue 3, 2007, Pages 184-191, ISSN 0929-1393

    https://doi.org/10.1016/j.apsoil.2007.06.005
  118. 121.

    Pfiffner, Lukas & Mäder, Paul. (1997). Effects of Biodynamic, Organic and Conventional Production Systems on Earthworm Populations. Biological Agriculture and Horticulture. 15. 2-10.

    https://doi.org/10.1080/01448765.1997.9755177
  119. 122.

    Tuck, S. L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L. A. and Bengtsson, J. (2014), Land‐use intensity and the effects of organic farming on biodiversity: a hierarchical meta‐analysis. J Appl Ecol, 51: 746-755.

    https://doi.org/10.1111/1365-2664.12219
  120. 123.

    Verbruggen, E., Röling, W.F.M., Gamper, H.A., Kowalchuk, G.A., Verhoef, H.A. and van der Heijden, M.G.A. (2010), Positive effects of organic farming on below‐ground mutualists: large‐scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist, 186: 968-979.

    https://doi.org/10.1111/j.1469-8137.2010.03230.x
  121. 124.

    Winqvist, C., Bengtsson, J., Aavik, T., Berendse, F., Clement, L., Eggers, S., Bommarco, R. (2011). Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of Applied Ecology, 48(3), 570-579.

    https://www.jstor.org/stable/20869978
  122. 125.

    Winqvist Camilla. 2013. Ekologiskt lantbruk, biologisk mångfald och ekosystemtjänster – i ett landskapsperspektiv. EPOK

    https://www.slu.se/epok
  123. 126.

    Blicharska, M., Smithers, R., Mikusiński, G., Rönnbäck, P., Harrison, P., Nilsson, M., & Sutherland, W. (2019). Biodiversity’s contributions to sustainable development. Nature Sustainability, 1–11.

    https://doi.org/10.1038/s41893-019-0417-9
  124. 127.

    Francisco Sánchez-Bayoa, Kris A.G. Wyckhuysb,c,d Biological Conservation 232 (2019) 8–27 Worldwide decline of the entomofauna: A review of its drivers

    https://doi.org/10.1016/j.biocon.2019.01.020
  125. 128.

    Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, et al. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10): e0185809.

    https://doi.org/10.1371/journal.pone.0185809
  126. 129.

    Kremen, C. (2015), Reframing the land‐sparing/land‐sharing debate for biodiversity conservation. Ann. N.Y. Acad. Sci., 1355: 52-76.

    https://doi.org/10.1111/nyas.12845
  127. 130.

    Anne-Christine Mupepele, Helge Bruelheide, Jens Dauber, Andreas Krüß, Thomas Potthast, Wolfgang Wägele, Alexandra-Maria Klein, Insect decline and its drivers: Unsupported conclusions in a poorly performed meta-analysis on trends—A critique of Sánchez-Bayo and Wyckhuys (2019), Basic and Applied Ecology, Volume 37, 2019, Pages 20-23, ISSN 1439-1791,

    https://doi.org/10.1016/j.baae.2019.04.001
  128. 131.

    Sandström, J., Bjelke, U., Carlberg, T. & Sundberg, S. 2015. Tillstånd och trender för arter och deras livsmiljöer – rödlistade arter i Sverige 2015. ArtDatabanken Rapporterar 17. ArtDatabanken, SLU. Uppsala

    https://www.artdatabanken.se/publikationer/bestall-publikationer/tillstand-och-trender-for-arter-och-deras-livsmiljoer-rodlistade-arter-i-sverige-2015/
  129. 132.

    Van Wagenberg, C., De Haas, Y., Hogeveen, H., Van Krimpen, M., Meuwissen, M., Van Middelaar, C., & Rodenburg, T. (2017). Animal Board Invited Review: Comparing conventional and organic livestock production systems on different aspects of sustainability. Animal, 11(10), 1839-1851.

    https://doi.org/10.1017/S175173111700115X
  130. 133.

    FAO. 2018. The future of food and agriculture – Alternative pathways to 2050. Rome. 224 pp. Licence: CC BY-NC-SA 3.0 IGO.

    https://www.fao.org/global-perspectives-studies/resources/detail/en/c/1157082/
  131. 134.

    IPCC 2019 Climate change and land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

    https://www.ipcc.ch/srccl/
  132. 135.

    Johan O. Karlsson, Elin Röös, Resource-efficient use of land and animals—Environmental impacts of food systems based on organic cropping and avoided food-feed competition, Land Use Policy, Volume 85, 2019, Pages 63-72, ISSN 0264-8377

    https://doi.org/10.1016/j.landusepol.2019.03.035
  133. 136.

    Karlsson, J.O., Carlsson, G., Lindberg, M. et al. Designing a future food vision for the Nordics through a participatory modeling approach. Agron. Sustain. Dev. 38, 59 (2018).

    https://doi.org/10.1007/s13593-018-0528-0
  134. 137.

    Sigrun Dahlin, Holger Kirchmann, Thomas Kätterer, Sophie Gunnarsson, and Lars Bergström "Possibilities for Improving Nitrogen Use From Organic Materials in Agricultural Cropping Systems," AMBIO: A Journal of the Human Environment 34(4), 288-295, (1 June 2005).

    https://doi.org/10.1579/0044-7447-34.4.288
  135. 138.

    J. A. Foley, N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. Mueller, C. O’Connell, D. K. Ray, P. C. West, C. Balzer, E. M. Bennett, S. R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, D. P. M. Zaks, 2011. Solutions for a cultivated planet. Nature 478, 337–342.

    https://doi.org/10.1038/nature10452
  136. 139.

    FAO, IFAD and WFP 2015. The State of Food Insecurity in the World 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. Rome, FAO.

    http://www.fao.org/3/a-i4646e.pdf
  137. 140.

    Holt-Giménez E, A Shattuck A, Altieri M, Herren H & Gliessman S 2012. We Already Grow Enough Food for 10 Billion People … and Still Can't End Hunger. Journal of Sustainable Agriculture, 36:6, 595-598

    https://doi.org/10.1080/10440046.2012.695331
  138. 141.

    IAASTD 2009. International assessment of agricultural knowledge, science and technology for development:global report. Eds: McIntyre BD, Herren HR, Wakhungu J & Watson RT, Washington DC, Island press.

    https://www.weltagrarbericht.de/fileadmin/files/weltagrarbericht/IAASTDBerichte/GlobalReport.pdf
  139. 142.

    Hansson I, Hamilton C, Ekman T, Forslund K (2000) Carcass quality in certified organic production compared with conventional livestock production. J Vet Med Series B Infect Dis Vet Public Health 47(2):111–120.

    https://doi.org/10.1046/j.1439-0450.2000.00313.x
  140. 143.

    Meier MS, Stoessel F, Jungbluth N, Juraske R, Schader C & Stolze M 2015. Environmental impacts of organic and conventional agriculturalproducts – Are the differences captured by life cycle assessment? Journal of Environmental Management 149 (2015) 193-208.

    https://doi.org/10.1016/j.jenvman.2014.10.006
  141. 144.

    Muller A, Schader C, El-Hage Scialabba N, Brüggemann J, Isensee A, Erb K-H, Smith P, Klocke P, Leiber F, Stolze M & Niggli U 2017. Strategies for feeding the world more sustainably with organic agriculture. Nature communications 8:1290.

    https://doi.org/10.1038/s41467-017-01410-w
  142. 145.

    Niggli U, Schmidt J, Watson C et al. 2016. Organic knowledge network arable. State-of-the-art research results and best practices. Report D.3.1.

    http://www.ok-net-arable.eu/images/OK_Net_WP3_D3.1_final.pdf
  143. 146.

    Ponisio LC,M’Gonigle LK, MaceKC, Palomino J, deValpine P, Kremen C (2014) Diversification practices reduce organic to conventional yield gap. Proc R Soc B 282:20141396.

    https://doi.org/10.1098/rspb.2014.1396
  144. 147.

    de Ponti T, Rijk B, van Ittersum MK (2012) The crop yield gap between organic and conventional agriculture. Agric Syst 108:1–9.

    https://www.sciencedirect.com/science/article/pii/S0308521X1100182X
  145. 148.

    Röös E, Mie A, Wivstad M, Salomon E, Johansson B, Gunnarsson5 S, Wallenbeck A, Hoffmann R, Nilsson U, Sundberg C, Watson CA 2018.Risks and opportunities of increasing yields in organic farming. A review. Agronomy for Sustainable Development 38:14.

    https://doi.org/10.1007/s13593-018-0489-3
  146. 149.

    SCB 2017. Gödselmedel i jordbruket 201SCB 2017. Gödselmedel i jordbruket 2015/16. Mineral- och stallgödesel till olika grödor samt hantering och lagring av stallgödsel. Statistiska meddelanden MI 30 SM 1702.

    https://www.scb.se/contentassets/de0a511d532a4a32ab921f4d034f260b/mi1001_2015b16_sm_mi30sm1702.pdf
  147. 150.

    SCB, 2019. Skörd för ekologisk och konventionell odling 2018 - Spannmål, trindsäd, oljeväxter, matpotatis och slåttervall.  JO 14 SM 1901. Jordbruksverket och SCB, 109 sidor.

    https://www.scb.se/contentassets/c37559bf147944b5822681df7d09c97b/jo0608_2018a01_sm_jo14sm1901.pdf
  148. 151.

    Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232.

    https://doi.org/10.1038/nature11069
  149. 152.

    Tuomisto HL, Hodge ID, Riordan P & Macdonald DW 2012. Does organic farming reduce environmental impacts? – A meta-analysis of European research. Journal of Environmental Management 112, 309-320

    http://dx.doi.org/10.1016/j.jenvman.2012.08.018
  150. 153.

    Shukla PR, Skea J, Slade R, van Diemen R, Haughey E, Malley J, Pathak M, Portugal Pereira J (eds.) Technical Summary, 2019. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M, Belkacemi, J. Malley, (eds.)]. In press.

    https://www.ipcc.ch/site/assets/uploads/2019/11/03_Technical-Summary-TS.pdf
  151. 154.

    Willet W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S et al 2019. Food in the anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393 (10170) 447-492.

    https://doi.org/10.1016/S0140-6736(18)31788-4
  152. 155.

    Wivstad M, Salomon E, Spångberg J & Jönsson H 2009. Ekologisk produktion - möjligheter att minska övergödning. Centrum för uthålligt lantbruk, Sveriges Lantbruksuniversitet. 

    https://www.slu.se/epok
  153. 156.

    Växa Sverige (2019) Husdjursstatistik 2019. (“Cattle statistics 2019”). Växa Sverige, Uppsala.

     

    https://www.vxa.se/fakta/styrning-och-rutiner/mer-om-mjolk/
  154. 157.

    FAOSTAT 2019. Pesticides use, FAOSTAT, Food and Agriculture Organization of the United Nations. 

    http://www.fao.org/faostat/en/#data/RP
  155. 158.

    P Schreinemachers & P Tipraqsa 2012. "Agricultural pesticides and land use intensification in high, middle and low income countries", Food Policy 37:616–626. 

    https://doi.org/10.1016/j.foodpol.2012.06.003
  156. 160.

    SCB 2022. Växtskyddsmedel i jord-och trädgårdsbruket 2021 Användning i grödor. Statistiska meddelanden MI 31 SM 2202, Statistiska Centralbyrån.

    https://www.scb.se/publikation/47848
  157. 161.

    EG 2009. Europaparlamentets och rådets direktiv 2009/128/EG. EU:s åtgärder för att uppnå hållbar användning av bekämpningsmedel.

    https://eur-lex.europa.eu/legal-content/SV/LSU/?uri=CELEX:32009L0128
  158. 162.

    SIGILL kvalitetssystem AB 2020

    https://www.sigill.se/
  159. 163.

    Jordbruksverket 2014. Statens jordbruksverks föreskrifter och allmänna råd om integrerat växtskydd

    http://www.jordbruksverket.se/download/18.ac526c214a28250ac22a00a/1418030482089/2014-042.pdf
  160. 164.

    Kemikalieinspektionen 2020. Växtskyddsmedel

    https://www.kemi.se/bekampningsmedel/vaxtskyddsmedel
  161. 165.

    Jordbruksverket 2019. Jordbruksstatistisk sammanställning 2019, kapitel 11, Ekologisk produktion

    http://www.jordbruksverket.se/download/18.26abb9db16b94164c6c44d5a/1561635267372/Kapitel%2011%20Ekologisk%20produktion.pdf
  162. 166.

    SCB 2022. Växtskyddsmedel i jord-och trädgårdsbruket 2021 Användning i grödor. Statistiska meddelanden MI 31 SM 2202, Statistiska Centralbyrån.

    https://www.scb.se/publikation/47848
  163. 167.

    Jordbruksverket 2019. Ekologisk växtodling 2018. Omställda arealer och arealer under omställning. Sveriges officiella statistik, Statistiska meddelanden, JO 13 SM 1901.

    https://www.scb.se/contentassets/4cd55499cc8d417d975775e02076e9ff/jo0114_2018a01_sm_jo13sm1901.pdf
  164. 168.

    Jordbruksverket 2023. Aktuellt från växtskyddscentralerna.

    https://jordbruksverket.se/vaxter/odling/vaxtskydd/aktuellt-fran-vaxtskyddscentralerna
  165. 169.

    Naturvårdsverket 2024. Biologiska bekämpningsmedel, Naturvårdsverket.

    https://www.naturvardsverket.se/amnesomraden/miljofororeningar/biologiska-bekampningsmedel
  166. 170.

    KEMI 2019. Försålda kvantiteter av bekämpningsmedel 2018, Kemikalieinspektionen.

    https://www.kemi.se/statistik/forsalda-kvantiteter-av-bekampningsmedel
  167. 171.

    P Einarsson 2017. Kemiska bekämpningsmedel i jordbruket – Fakta om användningen i Sverige 1981-2016, Naturskyddsföreningen. 

     

    https://www.naturskyddsforeningen.se/sites/default/files/dokument-media/rapport_kemiska_bekampningsmedel_2017.pdf
  168. 172.

    J Socorro et al 2016. "The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue", Scientific Reports 6:33456.

    https://doi.org/10.1038/srep33456
  169. 173.

    M Åkesson et al 2014. "On the scope and management of pesticide pollution of Swedish groundwater resources: The Scanian example", Ambio 44:226–238.

    https://doi.org/10.1007/s13280-014-0548-1
  170. 174.

    CKB 2020. Nationell miljöövervakning av bekämpningsmedel (växtskyddsmedel) i miljön, Institutionen för vatten och miljö, Sveriges Lantbruksuniversitet.

    https://www.slu.se/centrumbildningar-och-projekt/kompetenscentrum-for-kemiska-bekampningsmedel/information-om-bekampningsmedel-i-miljon1/
  171. 175.

    Nanos T., Gutfreund C., Lindström, B. 2019. Resultat från miljöövervakningen av bekämpningsmedel (växtskyddsmedel). Årssammanställning 2019. Sveriges lantbruksuniversitet, Institutionen för vatten och miljö. Rapport 2020:8

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/mo-rapporter/arsrapport-2019-miljoovervakningen-bek_final.pdf
  172. 176.

    Lindström, B., Larsson, M., Boye, K., Gönczi, M. och Kreuger, J.  2015. Resultat från miljöövervakningen av bekämpningsmedel (växtskyddsmedel). Långtidsöversikt och trender 2002-2012 för ytvatten och sediment.  Rapport 2015:5, SLU, Institutionen för vatten och miljö.

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/mo-rapporter/trender-i-mo-150521_final.pdf
  173. 177.

    Goedkoop W & Kahlert M 2018. Undersökning av pesticidorsakade effekter på bentiska organismsamhällen i jord brukspåverkade vattendrag. CKB rapport 2018:2, Kompentenscentrum för kemiska bekämpningsmedel, SLU.

    https://pub.epsilon.slu.se/15939/7/goedkoop_w_kahlert_m_190228.pdf
  174. 178.

    R B Schäfer et al 2007. "Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe", Science of the Total Environment 382:272–285. 

    https://doi.org/10.1016/j.scitotenv.2007.04.040
  175. 179.

    Rundlöf M, Lundin O & Bommarco R 2012. Växtskyddsmedelns påverkan på biologisk mångfald i jordbrukslandskapet. CKB rapport 2012:2. KompetensCentrum för Kemisk Bekämpning, SLU.

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/ckb-rapporter/ckb-biologisk-mangfald-slutlig-c.pdf
  176. 181.

    Tuck, S. L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L. A. and Bengtsson, J. (2014), Land‐use intensity and the effects of organic farming on biodiversity: a hierarchical meta‐analysis. J Appl Ecol, 51: 746-755.

    https://doi.org/10.1111/1365-2664.12219
  177. 182.

    FAO, 2011. Organic agriculture and climate change mitigation. A report of the Round Table on Organic Agriculture and Climate Change.

    http://www.fao.org/3/i2537e/i2537e00.pdf
  178. 183.

    Clark M, Tilman D 2017. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice

    https://doi.org/10.1088/1748-9326/aa6cd5
  179. 184.

    Cederberg C, Wallman M, Berglund M & Gustavsson J 2011. Klimatavtryck av ekologiska jordbruksprodukter. SIK-rapport Nr 8302011

    https://www.diva-portal.org/smash/get/diva2:943924/FULLTEXT01.pdf
  180. 185.

    Wivstad M, Salomon E, Spångberg J, Jönsson H 2009. Ekologisk produktion– möjligheter att minska övergödning

    https://www.slu.se/globalassets/ew/org/centrb/epok/aldre-bilder-och-dokument/publikationer/eko-prod-overgodning-syntes-web.pdf
  181. 186.

    Jordbruksverket 2020. Rekommendationer för gödsling och kalkning

    https://www2.jordbruksverket.se/download/18.6fd5d28c16f8ba7a70b48310/1578649240143/jo19_12v2.pdf
  182. 187.

    Växa Sverige (2020) Husdjursstatistik 2020. (“Cattle statistics 2020”). Växa Sverige, Uppsala.

    https://www.vxa.se/fakta/styrning-och-rutiner/mer-om-mjolk/
  183. 188.

    Elin Röös, Cecilia Sundberg, Eva Salomon och Maria Wivstad 2013 Ekologisk produktion och klimatpåverkan – En sammanställning av kunskapsläge och framtida forskningsbehov

    https://www.slu.se/globalassets/ew/org/centrb/epok/aldre-bilder-och-dokument/publikationer/eko-prod-o-klimatp-webb.pdf
  184. 189.

    Tomek de Ponti, Bert Rijk, Martin K. van Ittersum (2012) The crop yield gap between organic and conventional agriculture

    http://dx.doi.org/10.1016/j.agsy.2011.12.004
  185. 190.

    Searchinger, T.D., Wirsenius, S., Beringer, T. et al. Assessing the efficiency of changes in land use for mitigating climate change.

    https://doi.org/10.1038/s41586-018-0757-z
  186. 191.

    Alberto G. O. P. Barretto, Göran Berndes, Gerd Sparovek, Stefan Wirsenius 2013 Agricultural intensification in Brazil and its effects on land‐use patterns: an analysis of the 1975–2006 period

    https://doi.org/10.1111/gcb.12174
  187. 192.

    Elin Röös, Bojana Bajželj, Pete Smith, Mikaela Patel, David Little, Tara Garnett, 2017. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures,

    https://doi.org/10.1016/j.gloenvcha.2017.09.001
  188. 193.

    SCB 2019, Ekologisk växtodling 2018 Omställda arealer och arealer under omställning

    https://www.scb.se/contentassets/4cd55499cc8d417d975775e02076e9ff/jo0114_2018a01_sm_jo13sm1901.pdf
  189. 195.

    Poeplau, C., Aronsson, H., Myrbeck, Å., Kätterer, T. (2015).  Effect of perennial ryegrass cover crop on soil organic carbon stocks in southern Sweden. Geoderma Regional 4: 126–133. 

    https://doi.org/10.1016/j.geodrs.2015.01.004
  190. 195.

    Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: a critical re‐examination to identify the true and the false European Journal of Soil Science, 62(1), 42-55.

    https://doi.org/10.1111/j.1365-2389.2010.01342.x
  191. 196.

    Röös 2019. Kor och klimat. Centrum för ekologisk produktion och konsumtion, Epok, SLU

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/koroklimat_web.pdf
  192. 197.

    EG 2007. Rådets förordning (EG) nr 834/2007 om ekologisk produktion och märkning av ekologiska produktier.

    https://eur-lex.europa.eu/legal-content/SV/TXT/PDF/?uri=CELEX:02007R0834-20130701&qid=1565600243378&from=SV
  193. 198.

    SCB 2022. Växtskyddsmedel i jordbruket 2021. Beräknat antal hektardoser Statistiska meddelanden MI 31 SM 2201, Statistiska Centralbyrån.

    https://www.scb.se/publikation/47846
  194. 199.

    Jordbruksverket 2023. Växtskyddsåtgärder

    https://jordbruksverket.se/vaxter/odling/vaxtskydd/vaxtskyddsatgarder
  195. 200.
  196. 201.

    Rundlöf M & Lundin O 2019. Can costs of  pesticide exposure for bumblebees be balanced by benefits from a mass-flowering crop? Environmental Science & Technology 53, 14144-14151.

     

    https://pubs.acs.org/doi/pdf/10.1021/acs.est.9b02789
  197. 202.

    Andersson  L & Ullvén U 2019. Rotogräsens När Var Hur. En guide till icke-kemisk bekämpning av perenna ogräs. SLU Ekologisk produktion och konsumtion, Uppsala.

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/ograsskrift_web.pdf
  198. 203.

    Jorbruksverket, exempel på skrifter om ogräsbekämpning: Ståhl P 2018. Rotogräs. Jordbruksinformation 13 – 2018. Jordbruksverket.

    https://webbutiken.jordbruksverket.se/sv/artiklar/jo1813.html
  199. 204.

    Nilsson U, Porcel M, Swirgel W & Wivstad M 2016. Habitat manipulation – as a pest management tool in vegetable and fruit cropping systems, with the focus on insects and mites. SLU Ekologisk produktion och konsumtion, Uppsala.

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/biokontrollsyntes_web.pdf
  200. 205.

    Nilsson U, Porcel M, Swirgel W & Wivstad M 2017. Förstärkt växtskydd med blommande växter – i grönsaks- och fruktodling. SLU Ekologisk produktion och konsumtion, Uppsala.

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/habitatmanipulering_se_webb.pdf
  201. 206.

    Kemikalieinspektionen 2024. Bekämpningsmedelsregistret.

    Sökväg: Användningsområde/Huvudgrupp- växtskyddsmedel; Undergrupp-biologiskt; Mikroorganismer; Resultatvy-ämne; Produktstatus- Har gällande godkännande

    https://apps.kemi.se/BkmRegistret/Kemi.Spider.Web.External/
  202. 208.

    CBC 2023. SLU centrum för biologisk bekämpning.

    https://www.slu.se/cbc
  203. 210.

    EG 2008. Kommissionens förordning (EG) nr 889/2008 om tillämpningsföreskrifter för rådets förordning (EG) nr 834/2007 om ekologisk produktion och märkning av ekologiska pro- dukter med avseende på ekologisk produktion, märkning och kontroll. Konsoliderad version 21 maj 2017. I Bilaga II, Bekämpningsmedel, finns lista på verksamma ämnen/ämnesgrupper tillåtna i ekologisk produktion. 

    https://eur-lex.europa.eu/legal-content/SV/ALL/?uri=CELEX%3A32008R0889
  204. 211.

    Jordbruksverket 2019. Bifarliga preparat i lantbruk och trädgårdsodling.

    https://www2.jordbruksverket.se/download/18.4137542a1690c8c625326932/1550740063616/ovr479v3.pdf
  205. 212.

    EPA 2017. Ecological Risk Management Rationale for Pyrethroids in Registration Review.

    https://www.regulations.gov/docket?D=EPA-HQ-OPP-2015-0752
  206. 214.

    Bernstein IL, Bernstein JA, Miller M, Tierzieva S, Bernstein DI, Lummus Z, Selgrade MK, Doerfler DL & Seligy VL 1999. Immune responses in farm workers after exposure to Bacillus thuringiensis pesticides. Environmental Health Perspectives. Jul;107(7):575.

    https://dx.doi.org/10.1289%2Fehp.99107575
  207. 215.

    Bengtsson J 2015. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecological Entomology 40 (1), 45-55.

    https://doi.org/10.1111/een.12247
  208. 216.

    Milleneum Ecosystem Assessment 2005. Ecosystems and human wellbeing. Biodiversity Synthesis.World Resources Institute, Washington, DC.

    https://www.millenniumassessment.org/documents/document.354.aspx.pdf
  209. 217.

    IPBES 2019. The global assessment report on biodiversity and ecosystem services, Summary for policy makers. Intergovernmental Science-Policy Plattform on Biodiversity and Ecosystem Services

    https://ipbes.net/sites/default/files/2020-02/ipbes_global_assessment_report_summary_for_policymakers_en.pdf
  210. 218.

    Gamfeldt L, Snäll t, Bagchi R et al. 2013. Higher ledvels of multiple ecosystem services are found in forests with more tree species. Nature communications 4:1340.

    https://doi.org/10.1038/ncomms2328
  211. 219.

    M. Loreau, S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman, D. A. Wardle, 2001. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges Science26 : 804-808

    http://science.sciencemag.org/content/294/5543/804
  212. 220.

    Sveriges miljömål, Ett rikt odlingslandskap.

    https://www.sverigesmiljomal.se/miljomalen/ett-rikt-odlingslandskap/
  213. 221.

    Jordbruksverket 2019. Ett rikt odlingslandskap. Fördjupad utvärdering 2019

    https://www2.jordbruksverket.se/download/18.4d4abf9b16871aa85b5ce3bf/1548332719871/ra18_31.pdf
  214. 222.

    Van Klink R, Bowler DE, Gingalasky KB, Swengel AB, Gentile A & Chase JM 2020. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances, Science 368 (6489), 417-420.

    https://www.x-mol.com/paperRedirect/1253455275865563136
  215. 223.

    Jonason D, Andersson GKS, Öckinger E, Rundlöf M. Smith HG & Bengtsson J 2011. Assessing the effects of the time since transition to organic farming on plants and butterflies. Journal of Applied Ecology 48, 543-550.

    https://doi.org/10.1111/j.1365-2664.2011.01989.x
  216. 224.

    Wolnicki K, Lesinski G & Rembialkowska E 2009. Birds inhabiting organic and conventional farms in central Poland. Acta zoological cracoviensia 52, 1-10.

    https://doi.org/10.3409/azc.52a_1-2.01-10
  217. 225.

    Smith HG, Dänhardt J, Lindström Å & Rundlöf M 2010. Consequences of organic farming and landscape heterogeneity for species richnessd and abundance of farmland birds. Oecologica 162, 1071-1079.

    https://doi.org/10.1007/s00442-010-1588-2
  218. 226.

    Manoharan L, Rosenstock NP, Williams A & Hedlund K 2017. Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity. Applied Soil Ecology 115, 53–59.

    https://doi.org/10.1016/j.apsoil.2017.03.012
  219. 227.

    Schneider KD, Lynch DH, Dunfield K, Khosla K, Jansa J & Voroney RP 2015. Farm system management affects community structure of arbuscular mycorrhizal fungi. Applied Soil Ecology 96:192–200

    http://dx.doi.org/10.1016/j.apsoil.2015.07.015
  220. 228.

    Ryan MH & Graham JH 2018. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytologist 220: 1092–1107.

    https://doi.org/10.1111/nph.15308
  221. 229.

    Barbieri P, Pellerin S, Seufert V & Nesme T 2019. Changes in crop rotation would impact food production in an organically farmed world. Nature Sustainability 2, 378-385.

    https://doi.org/10.1038/s41893-019-0259-5
  222. 230.

    The Food Climate Research Network (FCRN) –Foodsource 2018.

    https://www.foodsource.org.uk/building-blocks/what-land-sparing-sharing-continuum
  223. 231.

    SCB 2019. Jordbruksmarkens användning 2019. Slutlig statistik. Statistiska meddelanden JO 10 SM 1902. Producerad av Jordbruksverket.

    https://www.scb.se/contentassets/7621acf8c91f4632a7861ec3af0e02a5/jo0104_2019a01_sm_jo10sm1902.pdf
  224. 232.

    Rundlöf, M, Nilsson, H & Smith, H 2008, 'Interacting effects of farming practice and landscape context on bumble bees', Biological Conservation, vol. 141, no. 2, pp. 417-426.

    https://doi.org/10.1016/j.biocon.2007.10.011
  225. 233.

    Entz, Martin & Penner, K. & Vessey, Joseph & Zelmer, C. & Thiessen Martens, Joanne. 2004. Mycorrhizal colonization of flax under long-term organic and conventional management. Canadian Journal of Plant Science. 84. 1097-1099.

    https://doi.org/10.4141/P04-055
  226. 234.

    Bedini, S., Avio, L., Sbrana, C. et al. Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biol Fertil Soils 49, 781–790 (2013).

    https://doi.org/10.1007/s00374-012-0770-6
  227. 235.

    Maj Rundlöf, Janne Bengtsson, Henrik G. Smith, 2008, Local and landscape effects of organic farming on butterfly species richness and abundance

    https://doi.org/10.1111/j.1365-2664.2007.01448.x
  228. 236.

    EFSA (European Food Safety Authority), 2019. Scientific report on the 2017 European Union report on pesticide residues in food. EFSA Journal 2019;17(6):5743, 152 pp.

    https://doi.org/10.2903/j.efsa.2019.5743
  229. 237.

    Norén E, Lindh C, Rylander L, Glynn A, Axelsson J, Littorin M, Faniband M, Larsson E, Nielsen C: Concentrations and temporal trends in pesticide biomarkers in urine of Swedish adolescents, 2000–2017. Journal of exposure science & environmental epidemiology 2020:1-12.

    https://doi.org/10.1038/s41370-020-0212-8
  230. 238.

    Bjermo H, Gyllenhammar I, Lindh CH: Concentrations of phthalates and phenolic substances in urine from first-time mothers in Uppsala, Sweden: temporal trends 2009-2018. In.: Livsmedelsverket; 2019.

    http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Anaturvardsverket%3Adiva-8255
  231. 239.

    Centers for Disease Control and Prevention 2019: Fourth Report on Human Exposure to Environmental Chemicals, Updated Tables, January 2019. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention.

    https://www.cdc.gov/exposurereport/
  232. 240.

    Van Der Mark M, Brouwer M, Kromhout H, Nijssen P, Huss A, Vermeulen R: Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. Environmental health perspectives 2012, 120(3):340-347.

    https://doi.org/10.1289/ehp.1103881
  233. 241.

    Schinasi L, Leon ME: Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health 2014, 11(4):4449-4527

    https://doi.org/10.3390/ijerph110404449
  234. 242.

    Ntzani E, Chondrogiorgi M, Ntritss sG, Evangelou E, Tzoulaki I: Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA supporting publication 2013(2013:EN-497):159pp.

    https://doi.org/10.2903/sp.efsa.2013.EN-497
  235. 243.

    Gunnarsson L-G, Bodin L: Parkinson's disease and occupational exposures: a systematic literature review and meta-analyses. Scandinavian journal of work, environment & health 2017:197-209.

    https://doi.org/10.5271/sjweh.3641
  236. 244.

    Van Maele-Fabry G, Hoet P, Vilain F, Lison D: Occupational exposure to pesticides and Parkinson's disease: a systematic review and meta-analysis of cohort studies. Environ Int 2012, 46:30-43.

    https://doi.org/10.1016/j.envint.2012.05.004
  237. 245.

    Goldman L: Childhood pesticide poisoning: Information for advocacy and action. Geneva, Switzerland: United Nations Environment Programme and WHO 2004.

    https://s3.eu-north-1.amazonaws.com/ekofakta/uploads/files/240c8c7c-3cc9-4f6f-baac-24b370112a5e.pdf
  238. 246.

    UN Human Rights Council: Report of the Special Rapporteur on the right to food. In: UN Human Rights Council, Geneva Switzerland 2017.

    https://www.ohchr.org/en/issues/food/pages/foodindex.aspx
  239. 248.

    Broman F, Halldin Ankarberg E, Bergkvist P: Hanteringsrapport gällande dioxin och dioxinlika PCB i ägg. Livsmedelsverket. In.; 2016.

    https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2016/hanteringsrapport-dioxin-och-dioxinlika-pcb-i-agg-2016.pdf
  240. 250.

    EFSA Panel on Contaminants in the Food Chain, Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L et al: Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA Journal 2018, 16(11):e05333.

    https://doi.org/10.2903/j.efsa.2018.5333
  241. 252.

    European Food Safety Authority: Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017, 15(9):4718.

    https://doi.org/10.2903/j.efsa.2017.4718
  242. 254.

    Mie A, Kesse-Guyot E, Rembialkowska W, Andersen HR, Grandjean P & Gunnarsson S 2016. Human health implications of organic food and organic agriculture. STUDY, Science and Technology Options Assessment, STOA, EPRS, European Parliament Research Service, Scientific Foresight Unit, PE 581.922.

     

    https://www.europarl.europa.eu/RegData/etudes/STUD/2016/581922/EPRS_STU(2016)581922_EN.pdf
  243. 255.

    van der Werf HMG, Trydeman Knudsen M & Cederberg C 2020. Towards bbetter representation of organic agriculture in life cycle assessment. Nature Sustainability, Perspecitves.

    https://doi.org/10.1038/s41893-020-0489-6
  244. 256.

    Stephen Clune, Enda Crossin, Karli Verghesec 2017, Systematic review of greenhouse gas emissions for different fresh food categories, Journal of Cleaner Production Volume 140, Part 2, 1 January 2017, Pages 766-783

    https://doi.org/10.1016/j.jclepro.2016.04.082
  245. 257.

    Björnberg, Odelros, Persson & Alarik 2005. Vägen mot 100 % ekologiskt foder till enkelmagade djur. Centrum för uthålligt lantbruk, SLU.

    https://www.slu.se/globalassets/ew/org/centrb/epok/aldre-bilder-och-dokument/publikationer/foderenkelmagade.pdf
  246. 258.

    Hu T, Sørensen P, Wahlström EM, Chirinda N, Sharif B, Li, X & Olesen JE 2018. Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass. Agriculture, Ecosystems and Environment 251, 141-148.

    http://dx.doi.org/10.1016/j.agee.2017.09.024
  247. 259.

    Andrén O, Kätterer T, Karlsson T & Eriksson J 2008. Soil C balances in Swedish agricultural soils 1990-2004, with preliminaray projections. Nutrient Cycling in Agroecosystems 81, 129-144.

    https://doi.org/10.1007/s10705-008-9177-z
  248. 260.

    McSherry, M.E. and Ritchie, M.E. (2013), Effects of grazing on grassland soil carbon: a global review. Glob Change Biol, 19: 1347-1357.

    https://doi.org/10.1111/gcb.12144
  249. 261.

    Fuss S, Lamb WF, Callahghan MW et al. 2018. Negative emissions–Part 2: Costs, potantials and side effects. Environmental Research Letters 13, 063002.

    https://doi.org/10.1088/1748-9326/aabf9f
  250. 262.

    Naturvårdsverket 2023. Sveriges utsläpp och upptag av växthusgaser.

    https://www.naturvardsverket.se/data-och-statistik/klimat/sveriges-utslapp-och-upptag-av-vaxthusgaser/
  251. 263.

    Naturvårdsverket 2021. Konsumtionsbaserade utsläpp av växthusgaser i Sverige och andra länder

    https://www.naturvardsverket.se/data-och-statistik/konsumtion/vaxthusgaser-konsumtionsbaserade-utslapp-i-sverige-och-andra-lander/
  252. 264.

    Naturvårdsverket 2020. Utsläpp av växthusgaser från jordbruket.

    https://www.naturvardsverket.se/Sa-mar-miljon/Statistik-A-O/Vaxthusgaser-utslapp-fran-jordbruk/
  253. 265.
  254. 266.

    Moberg E, Karlsson Potter H, Wood A, Hansson PA, Röös E (2020) Benchmarking the Swedish Diet Relative to Global and National Environmental Targets—Identification of Indicator Limitations and Data Gaps. Sustainability 12, 1407.

    https://doi.org/10.3390/su12041407
  255. 268.

    Steinbach N, Palm V, Cederberg C m fl 2018. Miljöpåverkan från svensk konsumtion – nya indikatorer för uppföljning. Slutrapport för forskningsprojektet PRINCE. Rapport 6842, Naturvårdsverket.  

    https://www.naturvardsverket.se/978-91-620-6842-4
  256. 269.

    Bryngelsson D, Wirsenius S, Hedenus F, Sonesson U (2016) How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture. Food Policy 59, 152-164.

    https://doi.org/10.1016/j.foodpol.2015.12.012
  257. 270.

    Hallström E, Carlsson-Kanyama A, Börjesson P (2015) Environmental impact of dietary change: a systematic review. Journal of Cleaner Production 91:1–11

    https://doi.org/10.1016/j.jclepro.2014.12.008
  258. 271.

    Naturvårdsverket & Jordbruksverket 2019. Minskade utsläpp av växthusgaser från jordbruket med ökad produktion? Scenarier till 2045 för utsläpp och upptag av växthusgaser inom jordbrukssektorn.

    https://s3.eu-north-1.amazonaws.com/ekofakta/uploads/files/1bc07fe6-7878-4882-b8e1-4129aad779ae.pdf
  259. 272.

    Intergovernmental Panel on Climate Change. (2014). Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    https://doi.org/10.1017/CBO9781107415324
  260. 273.

    Díaz S, Settele J, Brondízio ES, et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science. 2019;366(6471):eaax3100.

    https://doi.org/10.1126/science.aax3100
  261. 274.

    BENGTSSON, J., AHNSTRÖM, J. and WEIBULL, A.‐C. (2005), The effects of organic agriculture on biodiversity and abundance: a meta‐analysis. Journal of Applied Ecology, 42: 261-269.

    https://doi.org/10.1111/j.1365-2664.2005.01005.x
  262. 275.

    HLPE 2015. Water for food security and nutrition. Rome: Food and Agriculture Organization of the UN.

    https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/458451/
  263. 276.

    HAV 2020. Jordbruk och vattenmiljö. Havs och Vattenmyndigheten.

    https://www.havochvatten.se/hav/fiske--fritid/miljopaverkan/jordbruk.html
  264. 277.

    Jordbruksverket 2020. Övergödning och läckage av växtnäring.

    https://jordbruksverket.se/jordbruket-miljon-och-klimatet/overgodning-och-lackage-av-vaxtnaring
  265. 280.

    Høøk Presto M, Algers B, Persson E, Andersson HK (2009) Different roughages to organic growing/finishing pigs - Influence on activity behaviour and social interactions. Livest Sci 123(1):55-62. 10.1016/j.livsci.2008.10.007

    https://doi.org/10.1016/j.livsci.2008.10.007
  266. 280.

    Kallabis KE, Kaufmann O (2012) Effect of a high-fibre diet on the feeding behaviour of fattening pigs. Archiv Fur Tierzucht-Arch Anim Breed 55(3):272-284

    http://doi.org/10.5194/aab-55-272-2012
  267. 282.

    Jensen MB, Studnitz M, Pedersen LJ (2010) The effect of type of rooting material and space allowance on exploration and abnormal behaviour in growing pigs. Appl Anim Behav Sci 123(3):87-92. 10.1016/j.applanim.2010.01.002

    https://doi.org/10.1016/j.applanim.2010.01.002
  268. 283.

    Holinger M, Früh B, Stoll P, Graage R, Wirth S, Bruckmaier R, Prunier A, Kreuzer M, Hillmann E (2018a) Chronic intermittent stress exposure and access to grass silage interact differently in their effect on behaviour, gastric health and stress physiology of entire or castrated male growing-finishing pigs. Physiol Behav 195:58-68.

    https://doi.org/10.1016/j.physbeh.2018.07.019
  269. 284.

    Presto M, Rundgren M, Wallenbeck A (2013) Inclusion of grass/clover silage in the diet of growing/finishing pigs - Influence on pig time budgets and social behaviour. Acta Agr ScandA-An 63(2):84-92.

    https://doi.org/10.1080/09064702.2013.793734
  270. 285.

    Presto Åkerfeldt M, Nihlstrand J, Neil M, Lundeheim N, Andersson HK, Wallenbeck A (2019) Chicory and red clover silage in diets to finishing pigs—influence on performance, time budgets and social interactions. Organic Agriculture 9(1):127-138

    https://doi.org/10.1007/s13165-018-0216-z
  271. 286.

    Botermans JAM, Olsson AC, Andersson M, Bergsten C, Svendsen J (2015) Performance, health and behaviour of organic growing-finishing pigs in two different housing systems with or without access to pasture. Acta Agr Scand A-An 65(3):158-167.

    https://doi.org/10.1080/09064702.2016.1158308
  272. 287.

    Holinger M, Früh B, Stoll P, Kreuzer M, Hillmann E (2018b) Grass silage for growing-finishing pigs in addition to straw bedding: Effects on behaviour and gastric health. Livest Sci 218:50-57.

    https://doi.org/10.1016/j.livsci.2018.10.012
  273. 288.

    Cornale P, Macchi E, Miretti S, Renna M, Lussiana C, Perona G, Mimosi A (2015) Effects of stocking density and environmental enrichment on behavior and fecal corticosteroid levels of pigs under commercial farm conditions. J Vet Behav 10(6):569-576.

    https://doi.org/10.1016/j.jveb.2015.05.002
  274. 289.

    Terlouw C, Berne A, Astruc T (2009) Effect of rearing and slaughter conditions on behaviour, physiology and meat quality of Large White and Duroc-sired pigs. Livest Sci 122(2):199-213

    https://doi.org/10.1016/j.livsci.2008.08.016
  275. 290.

    Bohnenkamp AL, Traulsen I, Meyer C, Muller K, Krieter J (2013) Comparison of growth performance and agonistic interaction in weaned piglets of different weight classes from farrowing systems with group or single housing. Animal 7(2):309-315.

    https://doi.org/10.1017/s1751731112001541
  276. 291.

    van Nieuwamerongen SE, Bolhuis JE, van der Peet-Schwering CMC, Soede NM (2014) A review of sow and piglet behaviour and performance in group housing systems for lactating sows. Animal 8(3):448-460

    https://doi.org/10.1017/S1751731113002280
  277. 292.

    van Nieuwamerongen SE, Soede NM, van der Peet-Schwering CMC, Kemp B, Bolhuis JE (2015) Development of piglets raised in a new multi-litter housing system vs. conventional single-litter housing until 9 weeks of age. J Anim Sci 93(11):5442-5454

    https://doi.org/10.2527/jas.2015-9460
  278. 293.

    Verdon M, Morrison RS, Hemsworth PH (2016) Rearing piglets in multi-litter group lactation systems: Effects on piglet aggression and injuries post-weaning. Appl Anim Behav Sci 183:35-41

    https://doi.org/10.1016/j.applanim.2016.05.008
  279. 294.

    Verdon M, Morrison RS, Rault JL (2019) Group lactation from 7 or 14 days of age reduces piglet aggression at weaning compared to farrowing crate housing. Animal 13(10):2327-2335.

    https://doi.org/10.1017/S1751731119000478
  280. 295.

    Thomsson O, Sjunnesson Y, Magnusson U, Eliasson-Selling L, Wallenbeck A, Bergqvist AS (2016) Consequences for Piglet Performance of Group Housing Lactating Sows at One, Two, or Three Weeks Post-Farrowing. PLoS One 11(6).

    https://doi.org/10.1371/journal.pone.0156581
  281. 296.

    Werner C, Schubbert A, Schrodl W, Kruger M, Sundrum A (2014) Effects of feeding different roughage components to sows in gestation on bacteriological and immunological parameters in colostrum and immune response of piglets. Arch Anim Nutr 68(1):29-41

    https://doi.org/10.1080/1745039x.2013.876184
  282. 297.

    Turpin DL, Langendijk P, Plush K, Pluske JR (2017) Intermittent suckling with or without co-mingling of non-littermate piglets before weaning improves piglet performance in the immediate post-weaning period when compared with conventional weaning. J Anim Sci Biotech 8(14).

    https://doi.org/10.1186/s40104-017-0144-x
  283. 298.

    Dippel S, Leeb C, Bochicchio D, Bonde M, Dietze K, Gunnarsson S, Lindgren K, Sundrum A, Wiberg S, Winckler C, Prunier A (2014) Health and welfare of organic pigs in Europe assessed with animal-based parameters. Organic Agriculture 4 (2):149-161.

    https://doi.org/10.1007/s13165-013-0041-3
  284. 299.

    Weissensteiner R, Baldinger L, Hagmuller W, Zollitsch W (2018) Effects of two 100% organic diets differing in proportion of home-grown components and protein concentration on performance of lactating sows. Livest Sci 214:211-218.

    https://doi.org/10.1016/j.livsci.2018.06.006
  285. 300.

    Szulc K (2011) Welfare of pigs in organic production system - assumptions and their implementation. J Res Appl Agric Engineer 56(4):143-147

  286. 301.

    Prunier A, Dippel S, Bochicchio D, Edwards S, Leeb C, Lindgren K, Sundrum A, Dietze K, Bonde M (2014) Characteristics of organic pig farms in selected European countries and their possible influence on litter size and piglet mortality. Organic Agriculture 4(2):163-173.

    https://doi.org/10.1007/s13165-013-0040-4
  287. 302.

    Lindgren Y, Lundeheim N, Boqvist S, Magnusson U (2013) Reproductive performance in pigs reared under organic conditions compared with conventionally reared pigs. Acta Vet Scand 55:4.

    https://doi.org/10.1186/1751-0147-55-33
  288. 303.

    Früh B, Bochicchio D, Edwards S, Hegelund L, Leeb C, Sundrum A, Werne S, Wiberg S, Prunier A (2014) Description of organic pig production in Europe. Organic Agriculture 4(2):83-92.

    https://doi.org/10.1007/s13165-013-0056-9
  289. 304.

    Westin R, Holmgren N, Hultgen J, Ortman K, Linder A, Algers B (2015) Post-mortem findings and piglet mortality in relation to strategic use of straw at farrowing. Prev Vet Med 119:141–152.

    http://dx.doi.org/10.1016/j.prevetmed.2015.02.023
  290. 305.

    Sundrum A, Goebel A, Bochicchio D, Bonde M, Bourgoin A, Cartaud G, Dietze K, Dippel S, Gunnarsson S, Hegelund L, Leeb C, Lindgren K, Prunier A, Wiberg S (2010) Health status in organic pig herds in Europe. Proc of the 21st Int Pig Veterinary Society (IPVS) Congress, July 18-21, 2010, Vancouver, Canada, p. 277.

  291. 306.

    Leeb C, Rudolph G, Bochicchio D, Edwards S, Fruh B, Holinger M, Holmes D, Illmann G, Knop D, Prunier A, Rousing T, Winckler C, Dippel S (2019) Effects of three husbandry systems on health, welfare and productivity of organic pigs. Animal:1-9.

    https://doi.org/10.1017/s1751731119000041
  292. 307.

    Wallenbeck A, Gustafson G, Rydhmer L (2009a) Sow performance and maternal behaviour in organic and conventional herds, Acta Agr Scand A-An 59(3):181-191.

    https://doi.org/10.1080/09064700903307824
  293. 308.

    Alban L, Petersen JV, Busch ME (2015) A comparison between lesions found during meat inspection of finishing pigs raised under organic/free-range conditions and conventional, indoor conditions. Porc Health Manag 1, 4

    https://doi.org/10.1186/2055-5660-1-4
  294. 309.

    Kongsted H, Sørensen JT (2017) Lesions found at routine meat inspection on finishing pigs are associated with production system. Vet J 223:25-30.

    https://doi.org/10.1016/j.tvjl.2017.04.016
  295. 310.

    Hushållningssällskapet 2014. Slaktkropparnas kvalitet i ekologisk uppfödning 2012.

    https://s3.eu-north-1.amazonaws.com/ekofakta/uploads/files/26b76108-df0c-44bf-955f-a1188ede0cc3.pdf
  296. 311.

    Simoneit C, Bender S, Koopmann R (2012) Quantitative and qualitative overview and assessment of literature on animal health in organic farming between 1991 and 2011-Part II: pigs, poultry, others. Landbauforschung-Ger 62(3):105-110

    https://www.semanticscholar.org/paper/Quantitative-and-qualitative-overview-and-of-on-in-Simoneit-Bender/6b34e775ba807ac2ed5b8f7c6c374cf009ee7f08
  297. 312.

    Wallenbeck, A., Eliasson, C., Lundeheim, N (2020) Leg health, growth and carcass characteristics in growing-finishing pigs of two different genotypes reared on Swedish organic farms. Organic Agriculture 10:97–103.

    https://doi.org/10.1007/s13165-019-00260-8
  298. 313.

    Etterlin PE, Morrison DA, Osterberg J, Ytrehus B, Heldmer E, Ekman S (2015) Osteochondrosis, but not lameness, is more frequent among free-range pigs than confined herd-mates. Acta Vet Scand 57:10.

    https://doi.org/10.1186/s13028-015-0154-7
  299. 314.

    Etterlin PE, Ytrehus B, Lundeheim N, Heldmer E, Osterberg J, Ekman S (2014) Effects of free-range and confined housing on joint health in a herd of fattening pigs. BMC Vet Res 10.

    https://doi.org/10.1186/s12917-014-0208-5
  300. 315.

    Katakam KK, Thamsborg SM, Dalsgaard A, Kyvsgaard NC, Mejer H (2016) Environmental contamination and transmission of Ascaris suum in Danish organic pig farms. Parasites Vectors 9:12.

    https://doi.org/10.1186/s13071-016-1349-0
  301. 317.

    Roepstorff A, Mejer H, Nejsum P, Thamsborg S.M (2011) Helminth parasites in pigs: New challenges in pig production and current research highlights. Vet Parasitol 180:72– 81.

    https://doi.org/10.1016/j.vetpar.2011.05.029
  302. 318.

    Knage-Rasmussen KM, Houe H, Rousing T, Sorensen JT (2014) Herd- and sow-related risk factors for lameness in organic and conventional sow herds. Animal 8(1):121-127.

    https://doi.org/10.1017/s1751731113001900
  303. 320.

    Gård & Djurhälsan 2017. Produktionsinriktning – Produktionsmodell.

    https://www.gardochdjurhalsan.se/wp-content/uploads/2018/05/Att-valja-produktionsinriktning.pdf
  304. 324.

    Dokumentation från seminarium anordnat av EPOK, november 2012. – Utevistelse och parasiter i ekologisk husdjursproduktion

    https://www.slu.se/centrumbildningar-och-projekt/epok-centrum-for-ekologisk-produktion-och-konsumtion/seminarier/seminariedokumentation/seminarier-2011-2013/det-ar-inne-att-vara-ute/
  305. 325.

    Fall, N., Emanuelson, U., Martinsson, K. & Jonsson, S. (2008). Udder health at a Swedish research farm with both organic and conventional dairy cow management. Preventive Veterinary Medicine, 86, 186-195.

    https://doi.org/10.1016/j.prevetmed.2007.07.003
  306. 327.

    Bergman MA, Richert RM, Cicconi-Hogan KM, Gamroth MJ, Schukken YH, Stiglbauer KE, Ruegg PL (2014) Comparison of selected animal observations and management practices used to assess welfare of calves and adult dairy cows on organic and conventional dairy farms. J Dairy Sci 97(7):4269-4280.

    https://doi.org/10.3168/jds.2013-7766
  307. 328.

    Langford FM, Rutherford KMD, Sherwood L, Jack MC, Lawrence AB, Haskell MJ (2011) Behavior of cows during and after peak feeding time on organic and conventional dairy farms in the United Kingdom J Dairy Sci 94:746–753

    https://doi.org/10.3168/jds.2010-3309
  308. 329.

    Richert RM, Cicconi KM, Gamroth MJ, Schukken YH, Stiglbauer KE, Ruegg PL (2013) Risk factors for clinical mastitis, ketosis, and pneumonia in dairy cattle on organic and small conventional farms in the United States. J Dairy Sci 96(7):4269-4285.

    https://doi.org/10.3168/jds.2012-5980
  309. 330.

    Levison LJ, Miller-Cushon EK, Tucker AL, Bergeron R, Leslie KE, Barkema HW, DeVries TJ (2016) Incidence rate of pathogen-specific clinical mastitis on conventional and organic Canadian dairy farms. J Dairy Sci 99(2):1341-1350.

    https://doi.org/10.3168/jds.2015-9809
  310. 331.

    Rodriguez-Bermudez R, Mir, a M, Orjales I, Rey-Crespo F, Munoz N, Lopez-Alonso M (2017) Holstein-Friesian milk performance in organic farming in North Spain: Comparison with other systems and breeds. Span J Agric Res 15(1):10.

    https://doi.org/10.5424/sjar/2017151-10037
  311. 332.

    Slagboom M, Kargo M, Edwards D, Sørensen AC, Thomasen JR, Hjortø L (2016) Organic dairy farmers put more emphasis on production traits than conventional farmers. J Dairy Sci 99(12): 9845-9856.

    https://doi.org/10.3168/jds.2016-11346
  312. 333.

    Sundberg T, Berglund B, Rydhmer L, Strandberg E (2009) Fertility, somatic cell count and milk production in Swedish organic and conventional dairy herds. Livest Sci 126(1):176-182.

    http://dx.doi.org/10.1016/j.livsci.2009.06.022
  313. 334.

    Valle PS, Lien G, Flaten O, Koesling M, Ebbesvik M (2007) Herd health and health management in organic versus conventional dairy herds in Norway. Livest Sci 112:123-132.

    https://doi.org/10.1016/j.livsci.2007.02.005
  314. 335.

    Fall N, Forslund K, Emanuelson U (2008) Reproductive performance, general health, and longevity of dairy cows at a Swedish research farm with both organic and conventional production. Livest Sci 118(1):11-19.

    https://doi.org/10.1016/j.livsci.2008.01.017
  315. 336.

    Poizat A, Bonnet-Beaugrand F, Rault A, Fourichon C, Bareille N (2017) Antibiotic use by farmers to control mastitis as influenced by health advice and dairy farming systems. Prev Vet Med 146:61-72.

    https://doi.org/10.1016/j.prevetmed.2017.07.016
  316. 337.

    Silverlås C, Emanuelson U, de Verdier K, Björkman C (2009) Prevalence and associated management factors of Cryptosporidium shedding in 50 Swedish dairy herds. Prev Vet Med 90(3):242-253.

    https://doi.org/10.1016/j.prevetmed.2009.04.006
  317. 338.

    Höglund J, Dahlstrom F, Engstrom A, Hessle A, Jakubek EB, Schnieder T, Strube C, Sollenberg S (2010) Antibodies to major pasture borne helminth infections in bulk-tank milk samples from organic and nearby conventional dairy herds in south-central Sweden. Vet Parasitol 171(3):293-299.

    https://doi.org/10.1016/j.vetpar.2010.04.002
  318. 339.

    Blanco-Penedo I, Fall N, Emanuelson U (2012a) Effects of turning to 100% organic feed on metabolic status of Swedish organic dairy cows. Livest Sci 143(2):242-248.

    https://doi.org/10.1016/j.livsci.2011.09.023
  319. 340.

    Blanco-Penedo I, Lopez-Alonso M, Shore RF, Miranda M, Castillo C, Hernandez J, Benedito JL (2012b) Evaluation of organic, conventional and intensive beef farm systems: health, management and animal production. Animal 6(9):1503-1511.

    https://doi.org/10.1017/S1751731112000298
  320. 341.

    Fall N, Emanuelson U (2009) Milk yield, udder health and reproductive performance in Swedish organic and conventional dairy herds. J Dairy Res 76(4):402-410.

    https://doi.org/10.1017/S0022029909990045
  321. 342.

    Bieber A, Wallenbeck A, Leiber F, Fuerst-Waltl B, Winckler C, Gullstr,  P, Walczak J, Wójcik P, Neff AS (2019) Production level, fertility, health traits, and longevity in local and commercial dairy breeds under organic production conditions in Austria, Switzerland, Poland, and Sweden. J Dairy Sci 102(6):5330-5341.

    https://doi.org/10.3168/jds.2018-16147
  322. 343.

    Rutherford KMD, Langford FM, Jack MC, Sherwood L, Lawrence AB, Haskell MJ (2009) Lameness prevalence and risk factors in organic and non-organic dairy herds in the United Kingdom. Vet J 180(1):95-105.

    https://doi.org/10.1016/j.tvjl.2008.03.015
  323. 344.

    Sjöstrom K, Fall N, Blanco-Penedo I, Duval JE, Krieger M, Emanuelson U (2018) Lameness prevalence and risk factors in organic dairy herds in four European countries. Livest Sci 208:44-50.

    https://doi.org/10.1016/j.livsci.2017.12.009
  324. 345.

    Jensen, P. 1988. Maternal behaviour and mother—Young interactions during lactation in free-ranging domestic pigs. Applied Animal Behaviour Science 20 (3-4), 297-308.

    https://doi.org/10.1016/0168-1591(88)90054-8
  325. 346.

    Wientjes, J.G.M., Soede, N.M., van der Peet-Schwering, C.M.C., van den Brand, H., Kemp, B. 2012. Piglet uniformity and mortality in large organic litters: Effects of parity and pre-mating diet composition. Livestock Science 144, 218-229. 

    https://doi.org/10.1016/j.livsci.2011.11.018
  326. 347.

    Höglund, J., Svensson, C., Hessle, A.. 2001. A field survey on the status of internal parasites in calves on organic dairy farms in southwestern Sweden. Veterinary Parasitology 99 (2), 113-128.

    https://doi.org/10.1016/S0304-4017(01)00452-6
  327. 348.

    Nyman, A.-K., Ekman, T., Emanuelson, U., Gustafsson, A.H., Holtenius, K., Persson Waller, K., Hallén Sandgren, C. 2007. Risk factors associated with the incidence of veterinary-treated clinical mastitis in Swedish dairy herds with a high milk yield and a low prevalence of subclinical mastitis. Preventive Veterinary Medicine 78 (2), 142-160. 

    https://doi.org/10.1016/j.prevetmed.2006.10.002
  328. 349.

    Elwinger, K., M. Tufvesson, G. Lagerkvist, and R. Tauson. 2008. Feeding layers of different genotypes in organic feed environments. Br. Poult. Sci. 49(6):654-665. (Article)

    https://doi.org/10.1080/00071660802491519
  329. 350.

    SVA 2020. Parasiter hos fjäderfän i Sverige.

     

    https://www.sva.se/produktionsdjur/fjaderfa/parasiter/
  330. 353.

    Bozakova N, Gerzilov V, Popova-Ralcheva S, Sredkova V (2011) Welfare assessment of three chicken breeds (Gallus gallus domesticus) under different production. Biotechn Anim Husb 27(4):1705-1713

  331. 354.

    Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: a critical re‐examination to identify the true and the false European Journal of Soil Science, 62(1), 42-55.

    https://doi.org/10.1111/j.1365-2389.2010.01342.x
  332. 355.

    Bestman M, Verwer C, Brenninkmeyer C, Willett A, Hinrichsen LK, Smajlhodzic F, Heerkens JLT, Gunnarsson S, Ferrante V (2017) Feather-pecking and injurious pecking in organic laying hens in 107 flocks from eight European countries. Anim Welfare 26(3):355-363.

    https://doi.org/10.7120/09627286.26.3.355
  333. 356.

    Jung L, Niebuhr K, Hinrichsen LK, Gunnarsson S, Brenninkmeyer C, Bestman M, Heerkens J, Ferrari P, Knierim U (2019) Possible risk factors for keel bone damage in organic laying hens. Animal 13(10): 2356-2364.

    https://doi.org/10.1017/S175173111900003X
  334. 357.

    Rodenburg TB, Van Krimpen MM, De Jong IC, De Haas EN, Kops MS, Riedstra BJ, Nordquist RE, Wagenaar JP, Bestman M, Nicol CJ (2013) The prevention and control of feather pecking in laying hens: Identifying the underlying principles. World's Poult Sci J 69(2):361-374.

    https://doi.org/10.1017/S0043933913000354
  335. 358.

    Richards GJ, Wilkins LJ, Knowles TG, Booth F, Toscano MJ, Nicol CJ, Brown SN (2012) Pop hole use by hens with different keel fracture status monitored throughout the laying period. Vet Rec 170(19)

    https://doi.org/10.1136/vr.100489
  336. 359.

    Jansson DS, Nyman A, Vagsholm I, Christensson D, Goransson M, Fossum O, Hoglund J (2010) Ascarid infections in laying hens kept in different housing systems. Avian Pathol 39(6):525-532.

    https://doi.org/10.1080/03079457.2010.527923
  337. 360.

    Hinrichsen LK, Labouriau R, Engberg RM, Knierim U, Sorensen JT (2016) Helminth infection is associated with hen mortality in Danish organic egg production. Vet Rec 179(8):4.

    https://doi.org/10.1136/vr.103614
  338. 361.

    Thapa S, Hinrichsen LK, Brenninkmeyer C, Gunnarsson S, Heerkens JLT, Verwer C, Niebuhr K, Willett A, Grilli G, Thamsborg SM, Sorensen JT, Mejer H (2015) Prevalence and magnitude of helminth infections in organic laying hens (Gallus gallus domesticus) across Europe. Vet Parasitol 214(1):118-124.

    https://doi.org/10.1016/j.vetpar.2015.10.009
  339. 362.

    Eriksson M, Waldenstedt L, Engstrom B, Elwinger K (2009) Protein supply in organic broiler diets. Acta Agr Scand A-An 59(4):211-219.

    https://doi.org/10.1080/09064700903358256
  340. 363.

    Rezaei M, Yngvesson J, Gunnarsson S, Jönsson L, Wallenbeck A (2018) Feed efficiency, growth performance, and carcass characteristics of a fast- and a slower-growing broiler hybrid fed low- or high-protein organic diets. Organic Agriculture 8(2):121-128.

    https://doi.org/10.1007/s13165-017-0178-6
  341. 364.

    Wallenbeck A, Wilhelmsson S, Jönsson L, Gunnarsson S, Yngvesson J (2017) Behaviour in one fast-growing and one slower-growing broiler (Gallus gallus domesticus) hybrid fed a high- or low-protein diet during a 10-week rearing period. Acta Agr Scand A-An66(3):1-9.

    https://doi.org/10.1080/09064702.2017.1303081
  342. 365.

    Castellini C, Mugnai C, Moscati L, Mattioli S, Amato MG, Mancinelli AC, Bosco Ad (2016) Adaptation to organic rearing system of eight different chicken genotypes: behaviour, welfare and performance. Ital J Anim Sci 15(1):37-46.

    https://doi.org/10.1080/1828051x.2015.1131893
  343. 366.

    Gouveia KG, Vaz-Pires P, da Costa PM (2009) Welfare assessment of broilers through examination of haematomas, foot-pad dermatitis, scratches and breast blisters at processing. Anim Welfare 18(1):43-48

    https://www.cabdirect.org/cabdirect/abstract/20103007537
  344. 367.

    Lund VP, Nielsen LR, Oliveira ARS, Christensen JP (2017) Evaluation of the Danish footpad lesion surveillance in conventional and organic broilers: Misclassification of scoring. Poult Sci 96(7):2018-2028.

    https://doi.org/10.3382/ps/pex024
  345. 368.

    Fanatico AC, Pillai PB, Hester PY, Falcone C, Mench JA, Owens CM, Emmert JL (2008) Performance, livability, and carcass yield of slow- and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poult Sci 87(6):1012-1021.

    https://doi.org/10.3382/ps.2006-00424
  346. 369.

    Wilhelmsson S, Yngvesson J, Jonsson L, Gunnarsson S, Wallenbeck A (2019) Welfare Quality ® assessment of a fast-growing and a slower-growing broiler hybrid, reared until 10 weeks and fed a low-protein, high-protein or mussel-meal diet. Livest Sci 219:71-79.

    https://doi.org/10.1016/j.livsci.2018.11.010
  347. 370.

    Tahamtani FM, Hinrichsen LK, Riber AB (2018) Welfare assessment of conventional and organic broilers in Denmark, with emphasis on leg health. Vet Rec 183(6):7.

    https://doi.org/10.1136/vr.104817
  348. 371.

    Newberry RC (2017) Chapter 9 - Commercial Free-Range Egg Production Practices. In: Hester PY (ed) Egg Innovations and Strategies for Improvements. Academic Press, San Diego, pp 89-102.

    https://doi.org/10.1016/B978-0-12-800879-9.00009-3
  349. 372.

    Wnuk-Gnich A, Lukasiewicz M, Niemiec J, Mroczek-Sosnowska N (2016) The effect of a housing system on production results and slaughter analysis of slow-growing chickens. Annals of Warsaw University of Life Sciences - SGGW, Anim Sci 55:309-318

    https://www.cabdirect.org/cabdirect/abstract/20173062924
  350. 373.

    Wierup M, Wahlström H, Lahti E, Eriksson H, Jansson DS, Odelros Å, Ernholm L (2017) Occurrence of Salmonella spp.: a comparison between indoor and outdoor housing of broilers and laying hens. Acta Vet Scand 59(1):13.

    https://doi.org/10.1186/s13028-017-0281-4
  351. 374.

    Yngvesson J, Wedin M, Gunnarsson S, Jonsson L, Blokhuis H, Wallenbeck A (2017) Let me sleep! Welfare of broilers (Gallus gallus domesticus) with disrupted resting behaviour. Acta Agr Scand A-An 67(3-4):123-133.

    https://doi.org/10.1080/09064702.2018.1485729
  352. 375.

    J Sanders & J Hess (eds) 2019. Leistungen des ökologischen Landbaus für Umwelt und Gesellschaft, Thünen Report 65, Johann Heinrich von Thünen-Institut.  

    https://doi.org/10.3220/REP1547040572000
  353. 376.

    Bauer A and Sweers W. 2015. Status of nutrient bookkeeping in the Baltic Sea countries. Report No. (UBA-FB) 002225. The German Environment Agency. Umweltbundesamt Wörlitzer Platz 1, 06844 Dessau-Roßlau. 68 pages.

    https://www.umweltbundesamt.de/en/topics/status-of-nutrient-bookkeeping-in-the-baltic-sea
  354. 377.

    De Notaris C, Rasmussen J, Sørensen P & Olesen JR 2018. Nitrogen leaching: A crop rotation perspective on the effects of N surplus, field management and use of catch crops. Agriculture, Ecosystems & Environment 255, 1-11.

    https://doi.org/10.1016/j.agee.2017.12.009
  355. 378.

    Askegaard M, Olesen JE, Rasmussen IA, Kristensen K (2011) Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management. Agric Ecosyst Environ 142:149–160.

    https://doi.org/10.1016/j.agee.2011.04.014
  356. 379.

    Plaza-Bonilla D, Nolot J-M, Raffaillac D, Justes E (2015) Cover crops mitigate nitrate leaching in cropping systems including grain legumes: field evidence and model simulations. Agric Ecosyst Environ 212:1–12.  

    https://doi.org/10.1016/j.agee.2015.06.014
  357. 380.

    S Hansen et al 2019. "Reviews and syntheses: Review of causes and sources of N2O emissions and NO3 leaching from organic arable crop rotations", Biogeosciences 16:2795-2819. 

    https://doi.org/10.5194/bg-16-2795-2019
  358. 381.

    K Mondelaers et al 2009. "A meta-analysis of the differences in environmental impacts between organic and conventional farming", British Food Journal 111:1098-1119.

    https://doi.org/10.1108/00070700910992925
  359. 382.

    R Einarsson et al 2018. "Nitrogen flows on organic and conventional dairy farms: a comparison of three indicators", Nutrient Cycling in Agroecosystems 110:25-38.

    https://doi.org/10.1007/s10705-017-9861-y
  360. 383.

    Gyllebo 2019. Produkter, Gyllebo Gödning AB.

    http://www.gyllebogodning.se/
  361. 384.

    Ekoväx 2019. Ekologiskt gödsel, Ekoväx i Norden AB.

    https://ekovax.se/ekologiskt-godsel/
  362. 385.

    G Torstensson et al 2006. "Nutrient Use Efficiencies and Leaching of Organic and Conventional Cropping Systems in Sweden", Agronomy Journal 98:603-615.

    https://doi.org/10.2134/agronj2005.0224
  363. 386.

    E Salomon et al 2007. "Outdoor pig fattening at two Swedish organic farms. Spatial and temporal load of nutrients and potential environmental impact", Agriculture, Ecosystems and Environment 121:407-418.

    https://doi.org/10.1016/j.agee.2006.11.017
  364. 387.

    J Eriksen et al 2002. "The fate of nitrogen in outdoor pig production", Agronomie 22:863-867.

    https://doi.org/10.1051/agro:2002045
  365. 388.

    B Carlsson et al 2009. Livscykelanalys (LCA) av svenskt ekologiskt griskött, SIK-rapport 798 2009, SIK Institutet för livsmedel och bioteknik.

    https://www.diva-portal.org/smash/get/diva2:943583/FULLTEXT01.pdf
  366. 389.

    C Basset-Mens et al 2006. "Implications of Uncertainty and Variability in the Life Cycle Assessment of Pig Production Systems", The International Journal of Life Cycle Assessment 11(5):298-304.

    https://doi.org/10.1065/lca2005.08.219
  367. 390.

    N Halberg et al 2010. "Impact of organic pig production systems on CO2 emission, C sequestration and nitrate pollution", Agronomy for Sustainable Development 30:721-731.

    https://doi.org/10.1051/agro/2010006
  368. 391.

    B Landquist et al 2016. Litteraturstudie av miljöpåverkan från konventionellt och ekologiskt producerade livsmedel. Fokus på studier utförda med livscykelanalysmetodik, Rapport 2-2016, Livsmedelsverket.

    https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2016/miljopaverkan-fran-konventionellt-och-ekologiskt-producerade-livsmedel-nr-2-2016.pdf
  369. 393.

    M A Sutton et al (eds) 2011. European Nitrogen Assessment, European Science Foundation.

    http://www.nine-esf.org/node/360/ENA-Book.html
  370. 394.

    J Rockström et al 2009. "Planetary Boundaries: Exploring the Safe Operating Space for Humanity", Ecology & Society 14(2):32.

    https://www.ecologyandsociety.org/vol14/iss2/art32/
  371. 395.

    W de Vries et al 2013. "Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts", Current Opinion in Environmental Sustainability 5:392–402.

    https://doi.org/10.1016/j.cosust.2013.07.004
  372. 396.

    Liu J, Ma, K, Ciais P % Polasky S 2016. Reducing human nitrogen use for food production. Scientific reports 6, Article number: 20104. 

    https://www.nature.com/articles/srep30104
  373. 397.

    L Lassaletta et al 2014. "50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland", Environmental Research Letters 9:105011.

    https://doi.org/10.1088/1748-9326/9/10/105011
  374. 398.

    SCB 2018. Kväve- och fosforbalanser för jordbruksmark 2016, Statistiska meddelanden MI 40 SM 1801, Statistiska Centralbyrån.

    https://www.scb.se/publikation/33799
  375. 399.

    Fölster J, Kyllmar K, Wallin M & Hellgren S 2012. Kväve- och fosfortrender i jordbruksvattendrag. Har åtgärderna gett effekt? Rapport 2012:1, Institutionen för vatten och miljö, SLU.

    https://pub.epsilon.slu.se/13165/1/folster_j_etal_160314.pdf
  376. 400.

    Caroprese M (2008) Sheep housing and welfare. Small Ruminant Res 76(1):21-25

    https://doi.org/10.1016/j.smallrumres.2007.12.015
  377. 401.

    Napolitano F, De Rosa G, Ferrante V, Grasso F, Braghieri A (2009) Monitoring the welfare of sheep in organic and conventional farms using an ANI 35 L derived method. Small Ruminant Res 83(1-3):49-57.

    https://doi.org/10.1016/j.smallrumres.2009.04.001
  378. 402.

    Hansen I (2015) Behavioural indicators of sheep and goat welfare in organic and conventional Norwegian farms. Acta Agr Scand A-An 65(1):55-61.

    https://doi.org/10.1080/09064702.2015.1050447
  379. 403.

    Malissiova E, Papadopoulos T, Kyriazi A, Mparda M, Sakorafa C, Katsioulis A, Katsiaflaka A, Kyritsi M, Zdragas A, Hadjichristodoulou C (2017) Differences in sheep and goats milk microbiological profile between conventional and organic farming systems in Greece. J Dairy Res 84(2):206-213.

    https://doi.org/10.1017/s0022029917000103
  380. 404.

    Höglund J, Elmahalawy ST, Halvarsson P, Gustafsson K (2019) Detection of Haemonchus contortus on sheep farms increases using an enhanced sampling protocol combined with PCR based diagnostics. Vet Parasitol X 2:100018.

    https://doi.org/10.1016/j.vpoa.2019.100018
  381. 405.

    Cabaret J, Nicourt C (2009) Sanitary problems in organic farming: facts, conceptions and practices. Prod Anim 22(3):235-243

    https://www.researchgate.net/publication/287538122_Sanitary_problems_in_organic_farming_Facts_conceptions_and_practises
  382. 406.

    Pilarczyk B, Balicka-Ramisz A, Ramisz A, Binerowska B (2008) Comparison of internal parasite invasions in sheep on ecological and conventional farms. Ann Anim Sci 8(1):89-93

    https://www.researchgate.net/publication/305875565_A_comparison_of_the_prevalence_of_gastrointestinal_parasites_in_sheep_from_the_indoor_and_outdoor_management_system
  383. 407.

    Mederos A, Fernandez S, VanLeeuwen J, Peregrine AS, Kelton D, Menzies P, LeBoeuf A, Martin R (2010) Prevalence and distribution of gastrointestinal nematodes on 32 organic and conventional commercial sheep farms in Ontario and Quebec, Canada (2006-2008). Vet Parasitol 170(3-4):244-252.

    https://doi.org/10.1016/j.vetpar.2010.02.018
  384. 408.

    Kern G, Traulsen I, Stamer E, Kemper N, Krieter J (2014) Effects and risk factors influencing longevity and animal health in sheep on organic farms: Development of preventive measures. Zuchtungskunde 86(4):260-273

    https://doi.org/
  385. 409.

    Gård och Djurhälsan 2020. Första lammhjälpen. Del 3: Omhändertagande av nedkylda lamm.

    https://www.gardochdjurhalsan.se/forsta-lammhjalpen-del-3-omhandertagande-av-nedkylda-lamm/
  386. 410.

    Winter JR, Kaler J, Ferguson E, KilBride AL, Green LE (2015) Changes in prevalence of, and risk factors for, lameness in random samples of English sheep flocks: 2004-2013. Prev Vet Med 122(1):121-128.

    https://doi.org/10.1016/j.prevetmed.2015.09.014
  387. 411.

    Bernes G, Stengarde L (2012) Sheep fed only silage or silage supplemented with concentrates. 1. Effects on ewe performance and blood metabolites. Small Ruminant Res 102(2):108-113.

    https://doi.org/10.1016/j.smallrumres.2011.09.001
  388. 412.

    Dickins A, Clark CCA, Kaler J, Ferguson E, O'Kane H, Green LE (2016) Factors associated with the presence and prevalence of contagious ovine digital dermatitis: A 2013 study of 1136 random English sheep flocks. Prev Vet Med 130:86-93.

    https://doi.org/10.1016/j.prevetmed.2016.06.009
  389. 413.

    Jordbruksverket 2019. Åtgärder för minskade växtnäringsförluster från jordbruket.

    https://www2.jordbruksverket.se/download/18.643c21e416b9421f4f8a6b91/1561709797248/ovr125v3.pdf
  390. 414.

    Bleken, M. A., Steinshamn H., Hansen, S. 2005. High nitrogen costs of dairy production in Europe: Worsened by intensification. Ambio Vol. 34, No. 8, 598-606.

    https://www.researchgate.net/publication/7256024_High_Nitrogen_Costs_of_Dairy_Production_in_Europe_Worsened_by_Intensification
  391. 415.

    SCB 2018.  Kväve- och fosforbalanser för jordbruksmark 2016. Statistiska meddelanden Mi 40 SM 1801, Statistiska centralbyrån.

    https://www.scb.se/contentassets/6707adf4535a475aa8d44526ec390ecd/mi1004_2016a01_sm_mi40sm1801.pdf
  392. 416.

    Öborn I, Edwards AC, Witter E, Oenema O, Withers PJA, Nilsson SI & Richert Stinzing A 2003.Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context, European Journal of Agronomy  20, 211-225. 

    https://doi.org/10.1016/S1161-0301(03)00080-7
  393. 417.

    Smith KA, Jackson DR, Misselbrook TH, Pain BF & Johnson RA 2000. Reduction of Ammonia Emission by Slurry Application Techniques, Journal of Agricultural Engineering Research 77(3), 277-287.

    https://doi.org/10.1006/jaer.2000.0604
  394. 418.

    Rodhe L, Pell M & Yamulki S 2006. Nitrous oxide, methane and ammonia emissions following slurry spreading on grassland. Soil Use and Management 22, 229–237. 

    https://doi.org/10.1111/j.1475-2743.2006.00043.x
  395. 419.

    Aronsson H, Hansen EM, Thomsen IK, øgaard AF, Känkänen H & Ulén B 2016. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland, Journal of Soil and Water Conservation 71:1. 

    https://doi.org/10.2489/jswc.71.1.41
  396. 420.

    Havs- och Vattenmyndigheten 2019. Ingen övergödning. Fördjupad utvärdering av miljökvalitetsmålen 2019. Rapport 2019:1.

    https://www.havochvatten.se/download/18.e8d4e81168852243c2431c5/1548678825311/rapport-2019-1-ingen-overgodning-fordjupad-utvardering.pdf
  397. 421.

    The Food and Agriculture Organization (FAO), FAOSTAT 2020

    http://www.fao.org/faostat/en/
  398. 422.

    Høøk Presto M, Algers B, Persson E, Andersson HK (2009) Different roughages to organic growing/finishing pigs - Influence on activity behaviour and social interactions. Livest Sci 123(1):55-62. 10.1016/j.livsci.2008.10.007

    https://doi.org/10.1016/j.livsci.2008.10.007
  399. 423.

    Allen, P. 2004. Together at the table: sustainability and sustenance in the American agrifood system. The Pennsylvania State University Press, University Park, Pennsylvania, USA.

    https://doi.org/10.1525/gfc.2006.6.2.103
  400. 424.

    Allen, P., M. FitzSimmons, M. Goodman, and K. Warner. 2003. Shifting plates in the agrifood landscape: the tectonics of alternative agrifood initiatives in California. Journal of Rural Studies 19:61-75.

    https://doi.org/10.1016/S0743-0167(02)00047-5
  401. 425.

    Angervall, T., U. Sonesson, F. Ziegler, C. Cederberg. Mat och klimat. En sammanfattning om matens klimatpåverkan i ett livscykelperspektiv, SIK-rapport, Februari 2008.

    https://s3.eu-north-1.amazonaws.com/ekofakta/uploads/files/edfbd9ea-5c2f-46b9-a922-d782523804f6.pdf
  402. 426.

    Åsebø K., A. Moxnes Jervell, G. Lieblein, M. Svennerud, and C. Francis. 2007. Farmer and consumer attitudes at farmers markets in Norway. Journal of Sustainable Agriculture 30:67-93.

    https://doi.org/10.1300/J064v30n04_06
  403. 427.

    Berti, G.; Mulligan, C. 2016. Competitiveness of Small Farms and Innovative Food Supply Chains: The Role of Food Hubs in Creating Sustainable Regional and Local Food Systems. Sustainability 2016, 8, 616,

    https://doi.org/doi:10.3390/su8070616
  404. 428.

    Björklund, J., Westberg, L., Geber, U., Milestad, R. & Ahnström, J. 2009. Local selling as a driving force for increased on-farm biodiversity. Journal of Sustainable Agriculture 33(8): 885-902.

    https://doi.org/10.1080/10440040903303694
  405. 429.

    Blay-Palmer, A.; Landman, K.; Knezevic, I.; Hayhurst, R. 2013. Constructing Resilient, Transformative Communities through Sustainable “Food Hubs”. Local Environ. 2013, 18, 521–528

    https://doi.org/10.1080/13549839.2013.797156
  406. 430.

    Born, B., and M. Purcell. 2006. Avoiding the local trap: scale and food systems in planning research. Journal of Planning Education and Research 26:195-207.

    https://doi.org/10.1177%2F0739456X06291389
  407. 431.

    Bos, E.; Owen, L. Virtual Reconnection: The Online Spaces of Alternative Food Networks in England. J. Rural Stud. 2016, 45, 1–14

    https://doi.org/10.1016/j.jrurstud.2016.02.016
  408. 432.

    Brown, A. 2002. Farmers' market research 1940-2000: an inventory and review. American Journal of Alternative Agriculture 17:167-176.

    https://doi.org/10.1079/AJAA200218
  409. 433.

    Carson, R. A., Z. Hamel, K. Giarrocco, R. Baylor & L. G. Mathews. 2016. Bying in: the influence of interactions at farmers’ markets. Agriculture and Human Values 33: 861-875.

    https://doi.org/10.1007/s10460-015-9675-y
  410. 434.

    DeLind, L. B. 2002. Place, work, and civic agriculture: common fields for cultivation. Agriculture and Human Values 19:217-224.

    https://doi.org/10.1023/A:1019994728252
  411. 435.

    Dubuisson-Quellier, S.; Lamine, C.; Le Velly, R. Citizenship and Consumption: Mobilisation in Alternative Food Systems in France. Sociol. Ruralis 2011, 51, 304–323.

    https://doi.org/10.1111/j.1467-9523.2011.00540.x
  412. 436.

    Eden, S., C. Bear, and G. Walker. 2008. Mucky carrots and other proxies: problematising the knowledge-fix for sustainable and ethical consumption. Geoforum 39:1044-1057.

    https://doi.org/10.1016/j.geoforum.2007.11.001
  413. 437.

    Edwards-Jones, G., L. M. i Canals, N. Hounsome, M. Truninger, G. Koerber, B. Hounsome, P. Cross, E. H. York, A. Hospido, K. Plassmann, I. M. Harris, R. T. Edwards, G. A. S. Day, A. D. Tomos, S. J. Cowell, and D. L. Jones. 2008. Testing the assertion that 'local food is best': the challenges of an evidence-based approach. Trends in Food Science and Technology 19:265-274.

    https://doi.org/10.1016/j.tifs.2008.01.008
  414. 438.

    Farmer, J. R., Chancellor, C., Robinson, J. West, S., & Weddell, M. (2014). Agrileisure: Farmers’ markets, CSAs, and the privilege in eating local. Journal of Leisure Research, 46(3), 313–328.

    https://doi.org/10.1080/00222216.2014.11950328
  415. 439.

    Feagan, R. 2007. The place of food: mapping out the "local" in local food systems. Progress in Human Geography 31:23-42.

    http://dx.doi.org/10.1177/0309132507073527
  416. 440.

    Garrett, H. (2014). Eating local: A cost analysis of farmers’ market vs. store-bought foods in Asheville, North Carolina. Journal of Undergraduate Research [University of North Carolina at Asheville], 2014(May), 465–474. Retrieved from https://libres.uncg.edu/ir/unca

     

    https://libres.uncg.edu/ir/unca/f/H_Garrett_Eating_JrnlUngRes_2014pdf.pdf
  417. 441.

    Goland, C. & S. Bauer. 2004. When the apple falls close to the tree: local food systems and the preservation of diversity. Sustainable Agriculture and Food Systems 19(4): 228-236.

    https://doi.org/10.1079/RAFS200487
  418. 442.

    Goodman, D., 2004. Rural Europe redux? Reflections on alternative agro-food networks and paradigm change. Sociologia Ruralis 44 (1), 3–16.

    https://doi.org/10.1111/j.1467-9523.2004.00258.x
  419. 443.

    Griffin, M. R., and E. A. Frongillo. 2003. Experiences and perspectives of farmers from Upstate New York farmers' markets. Agriculture and Human Values 20:189-203.

    https://doi.org/10.1023/A:1024065526440
  420. 444.

    Hassanein, N., 2003. Practicing food democracy: a pragmatic politics of transformation. Journal of Rural Studies 19, 77–86.

    https://doi.org/10.1016/S0743-0167(02)00041-4
  421. 445.

    Hendrickson, M. K., and W. D. Heffernan. 2002. Opening spaces through relocalisation: locating potential resistance in the weaknesses of the global food system. Sociologia Ruralis 42:347-369.

    https://doi.org/10.1111/1467-9523.00221
  422. 446.

    Hinrichs, C. C. 2000. Embeddedness and local food systems: notes on two types of direct agricultural market. Journal of Rural Studies 16:295-303.

    https://doi.org/10.1016/S0743-0167(99)00063-7
  423. 447.

    Hinrichs, C. C. 2003. The practice and politics of food system localization. Journal of Rural Studies 19:33-45.

    https://doi.org/10.1016/S0743-0167(02)00040-2
  424. 448.

    Hinrichs, C. C., G. W. Gillespie, and G. W. Feenstra. 2004. Social learning and innovation at retail farmers' markets. Rural Sociology 69:31-58.

    https://doi.org/10.1526/003601104322919892
  425. 449.

    Holloway, L.; Kneafsey, M.; Venn, L.; Cox, R.; Dowler, E.; Toumainen, H. Possible Food Economics: A Methodological Framework for Exploring Food Production-Consumption Relationships. Sociol. Ruralis 2007, 47, 1–19.

    https://doi.org/10.1111/j.1467-9523.2007.00427.x
  426. 450.

    Hunt, A. R. 2007. Consumer interactions and influences on farmers' markets vendors. Renewable Agriculture and Food Systems 22:54-66.

    https://doi.org/10.1017/S1742170507001597
  427. 451.

    Ilbery, B.; Maye, D. Retailing Local Food in the Scottish-English Borders: A Supply Chain Perspective. Geoforum 2006, 37, 352–367.

    https://doi.org/10.1016/j.geoforum.2005.09.003
  428. 452.

    IPES-Food, 2017. Too big to feed: exploring the impacts of mega-mergers, consolidation and concentration of power in the agri-food sector. www.ipes-food.org

    http://www.ipes-food.org/_img/upload/files/Concentration_FullReport.pdf
  429. 453.

    Jarosz, L. 2000. Understanding agri-food networks as social relations. Agriculture and Human Values 17:279-283.

    https://doi.org/10.1023/A:1007692303118
  430. 454.

    Jarosz, L. 2008. The city in the country: growing alternative food networks in metropolitan areas. Journal of Rural Studies 24:231-244.

    https://doi.org/10.1016/j.jrurstud.2007.10.002
  431. 455.

    Kirwan, J. 2006. The interpersonal world of direct marketing: examining conventions of quality at UK farmers' markets. Journal of Rural Studies 22:301-312.

    https://doi.org/10.1016/j.jrurstud.2005.09.001
  432. 456.

    Kneafsey, M.; Venn, L.; Schmutz, U.; Balázs, B.; Trenchard, L.; Eyden-Wood, T.; Bos, E.; Sutton, G.; Blackett, M. Short Food Supply Chains and Local Food Systems in the Eu. A State of Play of Their Socio-Economic Characteristics; European Commission: Luxembourg, 2013.

    http://dx.doi.org/10.2791/88784
  433. 457.

    Kummer, S. & R. Milestad. 2020. The diversity of organic box schemes in Europe – an exploratory study in four countries. Sustainability 12, 2734.

    https://doi.org/10.3390/su12072734
  434. 458.

    Lamine, C. Settling Shared Uncertainties: Local Partnerships between Producers and Consumers. Sociol. Ruralis 2005, 45, 324–345.

    https://doi.org/10.1111/j.1467-9523.2005.00308.x
  435. 459.

    LaTrobe, H. 2001. Farmers' markets: consuming local rural produce. International Journal of Consumer Studies 25:181-192.

    https://doi.org/10.1046/j.1470-6431.2001.00171.x
  436. 460.

    Lyson, T.A., 2000. Moving toward civic agriculture. Choices 15 (3), 42–45.

    https://doi.org/10.22004/ag.econ.132154
  437. 461.

    Lyson, T.A., 2004. Civic Agriculture: Reconnecting Farm, Food, and Community. Tufts University Press, Medford, MA.

    https://www.worldcat.org/title/civic-agriculture-reconnecting-farm-food-and-community/oclc/794670610
  438. 462.

    Lyson, T.A., Green, J., 1999. The agricultural marketscape: a framework for sustaining agriculture and communities in the Northeast. Journal of Sustainable Agriculture 15 (2/3), 133–150.

    https://doi.org/10.1300/J064v15n02_12
  439. 463.

    Milestad, R., S. Kummer and P. Hirner. 2017. Does scale matter? Investigating the growth of a local organic box scheme in Austria. Journal of Rural Studies, 54: 304-313.

    https://doi.org/10.1016/j.jrurstud.2017.06.013
  440. 464.

    Milestad, R., Westberg, L., Geber, U. & Björklund, J. 2010. Enhancing adaptive capacity in food systems: learning at farmers’ markets. Ecology and Society 15:3 29.

    http://www.ecologyandsociety.org/vol15/iss3/art29/
  441. 465.

    O’Hara, S.U., Stagl., S., 2001. Global food markets and their local alternatives: a socio ecological economic perspective. Population and Environment: A Journal of Interdisciplinary Studies 22 (6), 533–554.

    https://doi.org/10.1023/A:1010795305097
  442. 466.

    Ostrom, M., C. Kjeldsen, S. Kummer, R. Milestad & M. Schermer. 2017. What’s going into the box? An inquiry into the social and ecological embeddedness of large-scale EU and US box schemes. International Journal of the Sociology of Agriculture & Food, 24(1): 113-134.  

    https://www.researchgate.net/publication/320922794_What%27s_Going_into_the_Box_An_Inquiry_into_the_Social_and_Ecological_Embeddedness_of_Large-scale_EU_and_US_Box_Schemes
  443. 467.

    Renting, H., Marsden, T., Banks, J., 2003. Understanding alternative food networks: exploring the role of short food supply chains in rural development. Environment and Planning A 35, 393–411.

    https://doi.org/10.1068/a3510
  444. 468.

    Schoolman, E. D. 2019. Do direct market farms use fewer agricultural chemicals? Evidence from the US census of agriculture. Renewable Agriculture and Food Systems 34: 415-429.

    https://doi.org/10.1017/S1742170517000758
  445. 469.

    Schupp, J. L. 2016. Just where does local food live? Assessing farmers’ markets in the United States. Agriculture and Human Values 33: 827-841.

    https://doi.org/10.1007/s10460-015-9667-y
  446. 470.

    Seyfang, G., 2008. Avoiding Asda? Exploring consumer motivations in local organic food networks. Local Environment 13 (3), 187–201.

    https://doi.org/10.1080/13549830701669112
  447. 471.

    Singleton, C.R., Sen, B., & Affuso, O. (2015). Disparities in the availability of farmers markets in the United States. Environmental Justice, 8(4), 135–143.

    https://doi.org/10.1089/env.2015.0011
  448. 472.

    Smithers, J., J. Lamarche, and A. E. Joseph. 2008. Unpacking the terms of engagement with local food at the farmers' market: insights from Ontario. Journal of Rural Studies 24:337-350.

    https://doi.org/10.1016/j.jrurstud.2007.12.009
  449. 473.

    Soper, R. 2016. Local is not fair: indigenous peasant farmer preference for export markets. Agriculture and Human Values 33: 537-548.

    https://doi.org/10.1007/s10460-015-9620-0
  450. 474.

    Steinkopf Rice, J. 2015. Priviliege and exclusion at the farmers’ market: finding from a survey of shoppers. Agriculture and Human Values 32: 21-29.

    https://doi.org/10.1007/s10460-014-9513-7
  451. 475.

    Tilman, D., Clark, M., 2014. Global diets link environmental sustainability and human health. Nature 515 (7528), 518–522

    https://doi.org/10.1038/nature13959
  452. 476.

    Venn, L., Kneafsy, M., Holloway, L., Cox, R., Dowler, E., Tuomainen, H., 2006. Researching European ‘alternative’ food networks: some methodological considerations. Area 38 (3), 248-258.

    https://doi.org/10.1111/j.1475-4762.2006.00694.x
  453. 477.

    Chmelíková L, Schmid H, Anke S, Hülsbergen K-J 2021. Nitrogen-use efficiency of organic and conventional arable and dairy farming systems in Germany. Nutrient Cycling in Agroecosystems 119:337-354.

    https://doi.org/10.1007/s10705-021-10126-9
  454. 478.

    Jordbruksverket 2020. Växtnäringsflöden på gårdar inom Greppa näringen. Rapport 2020:15, 92 s., Jönköping.

    https://www2.jordbruksverket.se/download/18.9c04955178ed0624f8c0d13/1619179186283/ra20_15v2.pdf
  455. 479.

    Naturvårdsverket, 1995. Vad innehåller avlopp från hushåll? Näring och metaller i urin och fekalier samt i disk- tvätt- bad & duschvatten. Stockholm.

    https://www.naturvardsverket.se/om-oss/publikationer/4400/vad-innehaller-avlopp-fran-hushall
  456. 480.

    Wivstad M, Salomon E, Spångberg J, Jönsson H 2009. Ekologisk produktion – möjligheter att minska övergödning. Rapport Centrum för uthålligt lantbruk, CUL, SLU, 62 sidor.

    https://www.slu.se/globalassets/ew/org/centrb/epok/aldre-bilder-och-dokument/publikationer/eko-prod-overgodning-syntes-web.pdf
  457. 481.

    Milestad, R, E. Röös, T. Stenius, M. Wivstad. 2020. Tensions in future development of organic production – views of stakeholders on Organic 3.0. Organic Agriculture.

    https://doi.org/10.1007/s13165-020-00312-4
  458. 482.

    Milestad, R., Wivstad, M., Lund, V and Geber, U. 2008. Goals and standards in Swedish organic farming: trading off between desirables. International Journal of Agricultural Resources, Governance and Ecology 7 (1/2): 23-39.

    http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-49053
  459. 483.

    IFOAM, 2014. The IFOAM Norms for Organic Production and Processing. Version 2014. IFOAM-Organic International, October 2019.

    https://www.ifoam.bio/sites/default/files/2020-09/IFOAM%20Norms%20July%202014%20Edits%202019.pdf
  460. 484.

    Rundgren, G. 2020. Hur svensk är svensk mat? En jämförelse mellan ekologiskt och konventionellt. Ekomatcentrum.

    http://ekomatcentrum.se/wp-content/uploads/2020/08/Hur-svenskt-%C3%A4r-svenskt-orginal-2020.pdf
  461. 485.

    Jordbruksverket 2015, Föreskrifter om ändring i Statens jordbruksverks föreskrifter och allmänna råd (SJVFS 2004:62) om miljöhänsyn i jordbruket vad avser växtnäring.

    https://jvdoc.sharepoint.com/:b:/s/sjvfs/EcayxCxix5xIiwxgrMWhyEsBWZ3MCXWCCX7dIcOi1NFq3Q?download=1
  462. 486.

    Cederberg, C. 2010. Djurproduktion utan fotfäste. S. 35-52 i Jordbruk som håller i längden. Formas Fokuserar. Formas. Stockholm.

    https://www.formas.se/download/18.462d60ec167c69393b9a1d0/1549956100364/jordbruk_som_haller_i_langden.pdf
  463. 488.

    Wallgren, C. 2006. Local or global food markets: a comparison of energy use for transport. Local Environment: the International Journal of Justice and Sustainability, ISSN 1354-9839, E-ISSN 1469-6711, Vol. 11, no 2, p. 233-251

    https://doi.org/10.1080/13549830600558598
  464. 489.

    Eriksson, C. 2018. Livsmedelsproduktion ur ett beredskapsperspektiv. Sårbarheter och lösningar för ökad resiliens. ISBN 978-91-7383-844-3. MSB och SLU.

    https://www.slu.se/globalassets/ew/org/centrb/fu-food/forskning/rapporter/ff-reports-1_eriksson_livsmedelsproduktion-ur-ett-beredskapsperspektiv.pdf
  465. 490.

    SOU 2009:69. En ny ransonerings- och prisregleringslag, Statens offentliga utredningar. Stockholm: Fritzes offentliga publikationer.

    https://www.regeringen.se/rattsliga-dokument/statens-offentliga-utredningar/2009/08/sou-200969/
  466. 491.

    Sundkvist, Å., Milestad, R. and Jansson, AM. 2005. On the Importance of Tightening Feedback Loops for Sustainable Development of Food Systems.  Food Policy 30: 224-239.

    https://doi.org/10.1016/j.foodpol.2005.02.003
  467. 492.

    Moberg E, Walker Andersson M, Säll S, Hansson P-A, Röös, E (2019) Determining the climate impact of food for use in a climate tax – design of a consistent and transparent model. The International Journal of Life Cycle Assessment 

    https://doi.org/10.1007/s11367-019-01597-8 
  468. 493.

    Cederberg, C., D. Mayer & A. Flysjö. 2009. Life cycle inventory of greenhouse gas emissions and use of land and energy. In Brazilian beef production. SIK Report No 792.

    https://www.researchgate.net/publication/242518937_Life_cycle_inventory_of_greenhouse_gas_emissions_and_use_of_land_and_energy_in_Brazilian_beef_production
  469. 494.

    Formas (2021) Växtföljders påverkan på inlagring av organiskt kol i jordbruksmark. Forskningsrådet för miljö, areella näringar och samhällsbyggande, Formas. Stockholm

    https://formas.se/analys-och-resultat/rapporter/2021-04-01-vaxtfoljders-paverkan-pa-inlagring-av-organiskt-kol-i-jordbruksmark.html
  470. 495.

    Poeplau, C., Bolinder, M. A., Eriksson, J., Lundblad, M., & Kätterer, T. (2015). Positive trends in organic carbon storage in Swedish agricultural soils due to unexpected socio-economic drivers. Biogeosciences12(11), 3241-3251.

    https://doi.org/10.5194/bg-12-3241-2015
  471. 496.

    Lupatini, M, Korthals, GW, de Hollander, M, Janssens, TK, & Kuramae, EE, 2017. Soil microbiome is more heterogeneous in organic than in conventional farming system. Frontiers in microbiology 7:2064.

    https://doi.org/10.3389/fmicb.2016.02064
  472. 497.

    Saleem, M, Hu, J, & Jousset, A, 2019. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annual Review of Ecology, Evolution, and Systematics 50:145-168.

    https://doi.org/10.1146/annurev-ecolsys-110617-062605
  473. 498.

    Shepherd, MA, Harrison, R, & Webb, J, 2002. Managing soil organic matter–implications for soil structure on organic farms. Soil use and Management 18:284-292.

    https://doi.org/10.1111/j.1475-2743.2002.tb00270.x
  474. 499.

    FAO (2022a). Organic agriculture. FN:s livsmedels- och jordbruksorganisation. Senast läst: 2022-01-31.

    https://www.fao.org/organicag/oa-faq/oa-faq1/en/
  475. 500.

    FAO (2022b). Agroecology knowledge hub. FN:s livsmedels- och jordbruksorganisation. Senast läst: 2022-01-31.

    https://www.fao.org/agroecology/knowledge/definitions/en/
  476. 501.

    FAO (2022c). Conservation agriculture. FN:s livsmedels- och jordbruksorganisation. Senast läst: 2022-01-31.

    https://www.fao.org/conservation-agriculture/en/
  477. 502.

    FAO (2022d). Agroforestry. FN:s livsmedels- och jordbruksorganisation Senast läst: 2022-01-31.

    https://www.fao.org/forestry/agroforestry/80338/en/
  478. 503.

    Ferguson, R. S., & Lovell, S. T. (2014). Permaculture for agroecology: design, movement, practice, and worldview. A review. Agronomy for Sustainable Development, 34, 251-274.

    https://doi.org/10.1007/s13593-013-0181-6
  479. 504.

    General Mills (2022). Regenerative agriculture. Senast läst: 2022-01-31.

    https://www.generalmills.com/en/Responsibility/Sustainability/Regenerative-agriculture
  480. 505.

    Giller, K. E., Hijbeek, R., Andersson, J. A., & Sumberg, J. (2021). Regenerative agriculture: an agronomic perspective. Outlook on Agriculture, 50, 13-25.

    https://doi.org/10.1177%2F0030727021998063
  481. 506.

    Gliessman, S. (2018). Defining agroecology. Agroecology and Sustainable Food Systems, 42, 599-600.

    https://doi.org/10.1080/21683565.2018.1432329
  482. 507.

    Greenpeace (2022). What is regenerative agriculture? Senast läst: 2022-01-31.

    https://www.greenpeace.org/aotearoa/story/what-is-regenerative-agriculture/
  483. 508.

    Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production? Journal of Agricultural Science, 145, 127-137.

    http://dx.doi.org/10.1017/S0021859607006892
  484. 509.

    Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 543-555

    https://doi.org/10.1098/rstb.2007.2169
  485. 510.

    Holmgren, D. (2017). Permaculture. Principles and Pathways beyond Sustainability. Mellidora Publishing, Hepburn Springs, Australien.

    https://store.holmgren.com.au/product/principles-and-pathways/
  486. 511.

    ICRAF (2022). What is agroforestry? World agroforestry. Senast läst: 2022-01-31.

    https://www.worldagroforestry.org/about/agroforestry
  487. 512.

    IFOAM (2022). The four principles of organic agriculture. International federation of organic agriculture movements. Senast läst: 2022-01-31.

    https://www.ifoam.bio/why-organic/shaping-agriculture/four-principles-organic
  488. 513.

    Kerr, R. B., Madsen, S., Stüber, M., Liebert, J., Enloe, S., Borghino, N., ... & Wezel, A. (2021). Can agroecology improve food security and nutrition? A review. Global Food Security, 29, 100540.

    https://doi.org/10.1016/j.gfs.2021.100540
  489. 514.

    Kudsk, P., & Mathiassen, S. K. (2020). Pesticide regulation in the European Union and the glyphosate controversy. Weed Science, 68, 214-222.

    https://doi.org/10.1017/wsc.2019.59
  490. 515.

    Mollison, B. (1988). Permaculture: a designer's manual. Tagari, Sister’s Creek, Australien.

  491. 516.

    Mollison, B., & Holmgren, D. (1978). Permaculture One: A Perennial Agriculture for Human Settlements. Tagari, Tyalgum, Australien.

    https://www.worldcat.org/title/permaculture-one-a-perennial-agricultural-system-for-human-settlements/oclc/36848452
  492. 517.

    Nair, P.K.R. (1993). An Introduction to Agroforestry; Springer: Dordrecht, Nederländerna.

    https://apps.worldagroforestry.org/Units/Library/Books/PDFs/32_An_introduction_to_agroforestry.pdf?n=161
  493. 518.

    Newton, P., Civita, N., Frankel-Goldwater, L., Bartel, K., & Johns, C. (2020). What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes. Frontiers in Sustainable Food Systems, 4, 577723.

    https://doi.org/10.3389/fsufs.2020.577723
  494. 519.

    Rodale Institute (2014). Regenerative Organic Agriculture and Climate Change. Rodale Institute, Kutztown, USA.

    https://rodaleinstitute.org/wp-content/uploads/rodale-white-paper.pdf
  495. 520.

    Schreefel, L., Schulte, R. P. O., de Boer, I. J. M., Schrijver, A. P., & van Zanten, H. H. E. (2020). Regenerative agriculture–the soil is the base. Global Food Security, 26, 100404.

    https://doi.org/10.1016/j.gfs.2020.100404
  496. 521.

    Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2009). Agroecology as a science, a movement and a practice. A review. Agronomy for Sustainable Development, 29, 503-515.

    https://doi.org/10.1051/agro/2009004
  497. 522.

    Wezel, A., Herren, B. G., Kerr, R. B., Barrios, E., Gonçalves, A. L. R., & Sinclair, F. (2020). Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agronomy for Sustainable Development, 40, 40.

    https://doi.org/10.1007/s13593-020-00646-z
  498. 523.

    KRAV 2023, KRAVs regelverk.

    https://regler.krav.se/
  499. 524.

    Jordbruksverket 2020. Växtnäringsflöden på gårdar inom Greppa Näringen. Hjelm E, red, Linge C, Nilsson H, Olofsson S. Rapport 2020:15, Jordbruksverket, Jönköping, 92 s.

    https://www2.jordbruksverket.se/download/18.9c04955178ed0624f8c0d13/1619179186283/ra20_15v2.pdf
  500. 525.

    Salomon E, Wivstad M 2013. Rötrest från biogasanläggningar — återföring av växtnäring i ekologisk produktion. Rapport, EPOK — Centrum för ekologisk produktion och konsumtion, SLU, Uppsala, 34 s.

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/rotrestsyntes-hemsida.pdf
  501. 526.

    Eghball B, Wienhold, BJ, Gilley JE, Eigenberg RA 2002. Mineralization of manure nutrients. Journalö ofSoil and Water Conservation 57 (6), 470-473.

    https://digitalcommons.unl.edu/biosysengfacpub/139/
  502. 527.

    SCB 2020. Gödselmedel i jordbruket 2018/19. Mineral- och stallgödsel till olika grödor samt hantering och lagring av stallgödsel. Statistiska meddelanden MI 30 SM 2002.

    https://www.scb.se/contentassets/e6fdbf100cab433798eeae49cc857632/mi1001_2018b19_sm_mi30sm2002.pdf
  503. 528.

    Oelofse M, Jensen LS, Magid J 2013. The implications of phasing out conventional nutrient supply in organic agriculture: Denmark as a case. Organic Agriculture 3, 41-55.

    https://doi.org/10.1007/s13165-013-0045-z
  504. 529.

    Nowak B, Nesme T, David C, Pellerin S 2013. To what extent does organic farming rely on nutrient inflows from conventional farming? Environmental Research Letters 8, 044045.

    https://doi.org/10.1088/1748-9326/8/4/044045
  505. 530.

    Barbieri P, Pellerin S, Seufert V, Smith L, Ramankutty, Nesme T 2021. Global option space for organic agriculture is delimited by nitrogen availability. Nature Food 2, 363-372.

    https://doi.org/10.1038/s43016-021-00276-y
  506. 531.

    Billen G, Aguilera E, Einarsson R, Garnier J, Gingrich S, Grizzetti B, Lassaletta L, Le Noe J, Sanz-Cobena A 2021. Reshaping the European agro-food system and closing its nitrogen cycle: The potential of combining dietary change, agroecology and circularity. One Earth 4, 839-850.

    https://doi.org/10.1016/j.oneear.2021.05.008
  507. 532.

    Spångberg J 2014. Recycling plant nutrients from waste and by-products. A life cycle perspective. Doctoral Thesis, Acta Universitatis agriculturae Sueciae 2014:20, Swedish University of Agricultural Sciences, Uppsala, Sweden.

    https://res.slu.se/id/publ/52443
  508. 533.

    Europaparlamentets och rådets förordning (EU) 2018/848 av den 30 maj 2018 om ekologisk produktion och märkning av ekologiska produkter och om upphävande av rådets förordning (EG) nr 834/2007

    http://data.europa.eu/eli/reg/2018/848/2022-01-01
  509. 534.

    Reimer M, Möller K, Hartmann TE (2020) Meta-analysis of nutrient budgets in organic farms across Europe. Org Agr 10:65-77.

    https://doi.org/10.1007/s13165-020-00300-8
  510. 535.

    Regeringen 2023. Sveriges nationella handlingsplan för hållbar användning av växtskyddsmedel för perioden 2023-2027.

    https://www.regeringen.se/contentassets/aa6ff551ad3c46ec8759dc89b18d23a5/nationell-handlingsplan-for-hallbar-anvandning-av-vaxtskyddsmedel-for-perioden-20232027/
  511. 536.

    FAOSTAT 2023. Pesticides use, FAOSTAT, Food and Agriculture Organization of the United Nations. 

    http://www.fao.org/faostat/en/#data/RP
  512. 537.

    SCB 2018. Växtskyddsmedel i jord- och trädgårdsbruket 2021. Användning i grödor. Statistiska meddelanden MI 31 SM 2202, Statistiska Centralbyrån.

    https://www.scb.se/contentassets/6e042f0902bb449fb15edc4c1eb8e22c/mi0502_2021i20_br_mi31br2202.pdf
  513. 538.

    KEMI 2023. Försålda kvantiteter av bekämpningsmedel 2021, Kemikalieinspektionen.

    https://www.kemi.se/webdav/files/Kemikaliestatistik/Bek%C3%A4mpningsmedel/forsalda_bkm_2021.pdf
  514. 539.

    Europakommissionen 2023. Farm to Fork strategy

    https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en
  515. 540.

    Kommissionens genomförandeförordning (EU) 2021/1165 – av den 15 juli 2021 om godkännande av vissa produkter och ämnen för användning i ekologisk produktion och om upprättande av förteckningar över dessa

    https://eur-lex.europa.eu/legal-content/SV/TXT/PDF/?uri=CELEX:32021R1165&from=SV
  516. 541.

    Burtscher-Schaden, H.; Durstberger, T.; Zaller, J.G. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. Toxics 202210, 753

    https://doi.org/10.3390/toxics10120753
  517. 542.

    Muneret, L., Mitchell, M., Seufert, V. et al. Evidence that organic farming promotes pest control. Nat Sustain 1, 361–368 (2018).

    https://doi.org/10.1038/s41893-018-0102-4
  518. 543.

    Rundlöf, M., Andersson, G. K., Bommarco, R., Fries, I., Hederström, V., Herbertsson, L., ... & Smith, H. G. (2015). Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature, 521(7550), 77-80.

    https://doi.org/10.1038/nature14420
  519. 544.

    Organic Sweden 2023. EKOLOGISKA ÅRSRAPPORTEN 2022

    https://files.ecommercedns.uk/239561/8bcd9c7b737e738da9d9033750719897.pdf
  520. 547.

    Terlau W, Hirsch D (2015). Sustainable consumption and the attitude-behaviour gap phenomenon – Causes and measurements towards a sustainable development. Proceedings in Food System Dynamics.

    https://doi.org/10.18461/pfsd.2015.1516
  521. 548.

    Vermeir I, Verbeke W (2006). Sustainable Food Consumption: Exploring the Consumer “Attitude-Behavioral intention” Gap. Journal of Agricultural and Environmental Ethics 19: 169-194.

    https://doi.org/10.1007/s10806-005-5485-3
  522. 549.

    Brown K A, Harris F, Potter C, Knai C (2020). The future of environmental sustainability labelling on food products. The Lancet Planetary Health 4: 137-138.

    https://doi.org/10.1016/S2542-5196(20)30074-7
  523. 550.

    Sønderskov K M, Daugberg C (2011). The state of consumer confidence in eco-labeling: organic labelling in Denmark, Sweden, The United Kingdom and The United States. Agriculture and Human Values 28: 507-517.

    https://doi.org/10.1007/s10460-010-9295-5
  524. 551.

    Ran Y, Nilsson Lewis A, Dawkins E, Grah R, Vanhuyse F, Engström E, Lambe F (2022). Information as an enabler of sustainable food choices: A behavioural approach to understanding consumer decision-making, Sust Prod Cons 31: 642-656.

    https://doi.org/10.1016/j.spc.2022.03.026
  525. 552.

    Shansan L, Zein K (2021) Meta-analysis of consumers' willingness to pay for sustainable food products. Appetite 163.

    https://doi.org/10.1016/j.appet.2021.105239
  526. 553.

    Aschemann-Witzel J, Zielke S (2017) Can’t Buy Me Green? A Review of Consumer Perceptions of and Behavior Toward the Price of Organic Food. The Journal of Consumer Affairs 57: 211-251.

    https://doi.org/10.1111/joca.12092
  527. 554.

    Mili, S. and Arfa, I. (2020). Uncovering Value Creation Factors in Organic Food Supply Chains, Int. J. Food System Dynamics, 11 (5), p. 503-521.

    https://doi.org/10.18461/ijfsd.v11i5.70
  528. 555.

    Orsini S, Padel S, Gambelli D, Lernoud J, Sanders J, Solfanelli F, Stolze M, Willer H, Zanoli R (2020). Beyond “mainstream” and “alternative” in organic supply food chains: Empirical examples of added value distribution from eight European countries. British Food Journal 122: 798–812.

    https://doi.org/10.1108/BFJ-07-2019-0508
  529. 556.

    Johnson T, Fröman E, Fidjeland L, Fröman H. Ekomatcentrum (2023). Marknadsrapport: Ekologiskt i offentlig sektor 2022. EMC-marknadsrapport-2023.pdf (ekomatcentrum.se)

    https://ekomatcentrum.se/wp-content/uploads/2023/05/EMC-marknadsrapport-2023-fardigstalld-1-1.pdf
  530. 557.

    Lindström H (2021). Food for Thought: Essays on Green Public Procurement and the Market for Organic Food. Doctoral Thesis Umeå Universitet.

    https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Aumu%3Adiva-188194
  531. 558.

    Att upphandla ekologisk odling – höga kostnader och en låg träffsäkerhet. Fokus Nummer 2021:2. AgriFood Economics Centre.

    https://www.agrifood.se/Files/AgriFood_Fokus20212.pdf
  532. 559.

    Ullvén (red) (2020). Höjd avkastning i ekoproduktionen – vilka värden måste värnas?

    https://res.slu.se/id/publ/114933
  533. 560.

    AgriFood Economics Centre Policy Brief 2022:4 (2022). Mot en miljövänlig växtodling - hur påverkas gårdens ekonomi?

    https://www.agrifood.se/Files/AgriFood_PB20224.pdf
  534. 561.

    Lovang, U (2013) Skillnad i lönsamhet mellan ekologisk och konventionell odling

    https://www.ekolantbruk.se/pdf/72915.pdf
  535. 562.

    Manevska-Tasevska G, Rabinowicz E. AgriFood Economics Centre (2015). Strukturomvandling och effektivitet i det svenska jordbruket

    https://www.agrifood.se/Files/AgriFood_Other_20151.pdf
  536. 563.
  537. 564.
  538. 565.

    Lovén I, Nordin M (2020). Ersättning för ekologisk produktion och företagens ekonomi.

    https://www2.jordbruksverket.se/download/18.4a40e3781765a8be040bada2/1608112721839/utv20_5.pdf
  539. 566.

    Crowder DW,  Reganold PD (2015). Financial competitiveness of organic agriculture on a global scale. Proceedings of the National Academy of Sciences.

    https://doi.org/10.1073/pnas.1423674112
  540. 567.

    Leduc et al. (2023) Farmers’ perceived values in conventional and organic farming:A comparison between French, Irish and Swedish farmers using the Means-end chain approach. Ecological Economics, 207, 107767.

    https://doi.org/10.1016/j.ecolecon.2023.107767