1. 1.

    Livsmedelsverket: De svenska kostråden. Hitta ditt sätt. Att äta grönare, lagom mycket och röra på dig.  In.; 2017.

    https://www.livsmedelsverket.se/globalassets/publikationsdatabas/broschyrer/kostraed_webb.pdf
  2. 2.

    Bradbury KE, Balkwill A, Spencer EA, Roddam AW, Reeves GK, Green J, Key TJ, Beral V, Pirie K, The Million Women Study C: Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. Br J Cancer 2014, 110(9):2321-2326.

    https://doi.org/10.1038/bjc.2014.148
  3. 3.

    Kesse-Guyot E, Baudry J, Assmann KE, Galan P, Hercberg S, Lairon D: Prospective association between consumption frequency of organic food and body weight change, risk of overweight or obesity: results from the NutriNet-Santé Study. British Journal of Nutrition 2017, 117(2):325-334.

    https://doi.org/10.1017/S0007114517000058
  4. 4.

    Kesse-Guyot E, Péneau S, Méjean C, Szabo de Edelenyi F, Galan P, Hercberg S, Lairon D: Profiles of Organic Food Consumers in a Large Sample of French Adults: Results from the Nutrinet-Santé Cohort Study. PLoS ONE 2013, 8(10):e76998.

    https://doi.org/10.1371/journal.pone.0076998
  5. 5.

    Baudry J, Lelong H, Adriouch S, Julia C, Allès B, Hercberg S, Touvier M, Lairon D, Galan P, Kesse-Guyot E: Association between organic food consumption and metabolic syndrome: cross-sectional results from the NutriNet-Santé study. European journal of nutrition 2018, 57(7):2477-2488.

    https://doi.org/10.1007/s00394-017-1520-1
  6. 6.

    Baudry J, Assmann KE, Touvier M, Allès B, Seconda L, Latino-Martel P, Ezzedine K, Galan P, Hercberg S, Lairon D et al: Association of frequency of organic food consumption with cancer risk: findings from the NutriNet-Santé prospective cohort study. JAMA internal medicine 2018, 178(12):1597-1606.

    https://doi.org/10.1001/jamainternmed.2018.4357
  7. 7.

    Mie A, Andersen HR, Gunnarsson S, Kahl J, Kesse-Guyot E, Rembiałkowska E, Quaglio G, Grandjean P: Human health implications of organic food and organic agriculture: a comprehensive review. Environ Health 2017, 16(1):111.

    https://doi.org/10.1186/s12940-017-0315-4
  8. 8.

    Hemler EC, Chavarro JE, Hu FB: Organic foods for cancer prevention—worth the investment? JAMA internal medicine 2018, 178(12):1606-1607.

    https://doi.org/10.1001/jamainternmed.2018.4363
  9. 9.

    Barański M, Średnicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, Benbrook C, Biavati B, Markellou E, Giotis C et al: Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. British Journal of Nutrition 2014, 112(05):794-811.

    https://doi.org/10.1017/S0007114514001366
  10. 10.

    Smith-Spangler C, Brandeau ML, Hunter GE, Bavinger JC, Pearson M, Eschbach PJ, Sundaram V, Liu H, Schirmer P, Stave C et al: Are Organic Foods Safer or Healthier Than Conventional Alternatives? A Systematic Review. Annals of Internal Medicine 2012, 157(5):348-366.

    https://doi.org/10.7326/0003-4819-157-5-201209040-00007
  11. 11.

    Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A: Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants & Redox Signaling 2012, 18(14):1818-1892.

    https://dx.doi.org/10.1089%2Fars.2012.4581
  12. 12.

    Cubero-Leon E, De Rudder O, Maquet A: Metabolomics for organic food authentication: Results from a long-term field study in carrots. Food chemistry 2018, 239:760-770.

    https://dx.doi.org/10.1016%2Fj.foodchem.2017.06.161
  13. 13.

    Mie A, Laursen K, Åberg KM, Forshed J, Lindahl A, Thorup-Kristensen K, Olsson M, Knuthsen P, Larsen E, Husted S: Discrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics. Analytical and Bioanalytical Chemistry 2014, 406(12):2885-2897.

    https://doi.org/10.1007/s00216-014-7704-0
  14. 14.

    Bonte A, Neuweger H, Goesmann A, Thonar C, Mäder P, Langenkämper G, Niehaus K: Metabolite profiling on wheat grain to enable a distinction of samples from organic and conventional farming systems. Journal of the Science of Food and Agriculture 2014, 94(13):2605-2612.

    https://doi.org/10.1002/jsfa.6566
  15. 15.

    Askegaard M, Olesen JE, Rasmussen IA, Kristensen K: Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management. Agriculture, ecosystems & environment 2011, 142(3-4):149-160.

    https://doi.org/10.1016/j.agee.2011.04.014
  16. 16.

    Treutter D: Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints. International Journal of Molecular Sciences 2010, 11(3):807-857.

    https://doi.org/10.3390/ijms11030807
  17. 17.

    Średnicka-Tober D, Barański M, Seal CJ, Sanderson R, Benbrook C, Steinshamn H, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Eyre M: Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta-and redundancy analyses. British Journal of Nutrition 2016:1-18.

    https://doi.org/10.1017/S0007114516000349
  18. 18.

    Fall N, Emanuelson U: Fatty acid content, vitamins and selenium in bulk tank milk from organic and conventional Swedish dairy herds during the indoor season. J Dairy Res 2011, 78(3):287-292.

    https://doi.org/10.1017/S0022029911000392
  19. 19.

    Średnicka-Tober D, Barański M, Seal C, Sanderson R, Benbrook C, Steinshamn H, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sońta K, Eyre M et al: Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. British Journal of Nutrition 2016, FirstView(Supplement -1):1-18.

    https://doi.org/10.1017/S0007114516000349
  20. 20.

    EU Commission: Commission Implementing Regulation (EU) 2015/861 of 3 June 2015 concerning the authorisation of potassium iodide, calcium iodate anhydrous and coated granulated calcium iodate anhydrous as feed additives for all animal species. In.; 2015.

    http://data.europa.eu/eli/reg_impl/2015/861/oj
  21. 21.

    EFSA Panel on Additives Products or Substances used in Animal Feed: Scientific Opinion on the safety and efficacy of iodine compounds (E2) as feed additives for all animal species: calcium iodate anhydrous and potassium iodide, based on a dossier submitted by Ajay Europe SARL. EFSA Journal 2013, 11(2):3099.

    https://doi.org/10.2903/j.efsa.2013.3099
  22. 22.

    Toledo P, Andrén A, Björck L: Composition of raw milk from sustainable production systems. International dairy journal 2002, 12(1):75-80.

    https://doi.org/10.1016/S0958-6946(01)00148-0
  23. 23.

    Lazarus JH: Iodine status in Europe in 2014. European thyroid journal 2014, 3(1):3-6.

    https://dx.doi.org/10.1159%2F000358873
  24. 24.

    Gartner R: Recent data on iodine intake in Germany and Europe. Journal of Trace Elements in Medicine and Biology 2016, 37:85-89.

    https://doi.org/10.1016/j.jtemb.2016.06.012
  25. 25.

    Andersson M, de Benoist B, Delange F, Zupan J: Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation. Public health nutrition 2007, 10(12A):1606-1611.

    https://doi.org/10.1017/S1368980007361004
  26. 26.

    Livsmedelsverket: Riksmaten – vuxna 2010–11. Livsmedels- och näringsintag bland vuxna i Sverige. Uppsala; 2012.

    https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2011/riksmaten_2010_20111.pdf
  27. 27.

    EFSA (European Food Safety Authority), Medina‐Pastor, P and Triacchini, G, 2020. The 2018 European Union report on pesticide residues in food. EFSA Journal 2020;18(4):6057, 103 pp.

    https://doi.org/10.2903/j.efsa.2020.6057
  28. 28.

    Livsmedelsverket: Kontroll av bekämpningsmedelsrester i livsmedel 2017. 2019.

    https://www.livsmedelsverket.se/bestall-ladda-ner-material/sok-publikationer/artiklar/2019/l-2019-nr-16
  29. 30.

    European Food Safety Authority: Monitoring data on pesticide residues in food: results on organic versus conventionally produced food. EFSA Supporting Publications 2018, 15(4):1397E.

    https://doi.org/10.2903/sp.efsa.2018.EN-1397
  30. 31.

    Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, Whyatt R: Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect 2011, 119(8):1196-1201.

    https://doi.org/10.1289/ehp.1003160
  31. 32.

    Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, Trujillo C, Johnson C, Bradman A, Barr DB et al: Prenatal Exposure to Organophosphate Pesticides and IQ in 7-Year-Old Children. Environ Health Perspect 2011, 119(8):1189-1195.

    https://doi.org/10.1289/ehp.1003185
  32. 33.

    Engel SM, Wetmur J, Chen J, Zhu C, Barr DB, Canfield RL, Wolff MS: Prenatal Exposure to Organophosphates, Paraoxonase 1, and Cognitive Development in Childhood. Environ Health Perspect 2011, 119(8):1182-1188.

    https://doi.org/10.1289/ehp.1003183
  33. 34.

    Drew D, britton W, Christensen C, Irwin W, Lowit A: Chlorpyrifos: Revised Human Health Risk Assessment for Registration Review. 2014.

    https://www.regulations.gov/document?D=EPA-HQ-OPP-2008-0850-0195
  34. 35.

    Britton W, Drew D, Holman E, Lowe K, Lowit A, Rickard K: Chlorpyrifos: Revised Human Health Risk Assessment for Registration Review 2016.

    https://www.regulations.gov/document?D=EPA-HQ-OPP-2008-0850-0195
  35. 36.

    Mie A, Ruden C, Grandjean P: Safety of Safety Evaluation of Pesticides: developmental neurotoxicity of chlorpyrifos and chlorpyrifos-methyl. Environ Health 2018, 17(1):77.

    https://doi.org/10.1186/s12940-018-0421-y
  36. 37.

    European Commission: Commission Implementing Regulation (EU) 2020/18 of 10 January 2020 concerning the non-renewal of the approval of the active substance chlorpyrifos, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011 (Text with EEA relevance).; 2020.

    http://data.europa.eu/eli/reg_impl/2020/18/oj
  37. 38.

    Bellanger M, Demeneix B, Grandjean P, Zoeller RT, Trasande L: Neurobehavioral Deficits, Diseases and Associated Costs of Exposure to Endocrine Disrupting Chemicals in the European Union. J Clin Endocr Metab 2015, 100(4):1256-1266.

    https://doi.org/10.1210/jc.2014-4323
  38. 39.

    Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T et al: Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemia. EFSA Journal 2017, 15(3):e04691.

    https://doi.org/10.2903/j.efsa.2017.4691
  39. 40.

    Andersen HR, Debes F, Wohlfahrt-Veje C, Murata K, Grandjean P: Occupational pesticide exposure in early pregnancy associated with sex-specific neurobehavioral deficits in the children at school age. Neurotoxicol Teratol 2015, 47:1-9.

    https://doi.org/10.1016/j.ntt.2014.10.006
  40. 41.

    Andersen HR, Schmidt IM, Grandjean P, Jensen TK, Budtz-Jorgensen E, Kjaerstad MB, Baelum J, Nielsen JB, Skakkebaek NE, Main KM: Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ Health Perspect 2008, 116(4):566-572.

    https://dx.doi.org/10.1289%2Fehp.10790
  41. 42.

    Wohlfahrt-Veje C, Andersen HR, Jensen TK, Grandjean P, Skakkebaek NE, Main KM: Smaller genitals at school age in boys whose mothers were exposed to non-persistent pesticides in early pregnancy. International Journal of Andrology 2012, 35(3):265-272.

    https://doi.org/10.1111/j.1365-2605.2012.01252.x
  42. 43.

    Wohlfahrt-Veje C, Andersen HR, Schmidt IM, Aksglaede L, Sorensen K, Juul A, Jensen TK, Grandjean P, Skakkebaek NE, Main KM: Early breast development in girls after prenatal exposure to non-persistent pesticides. International Journal of Andrology 2012, 35(3):273-282.

    https://doi.org/10.1111/j.1365-2605.2011.01244.x
  43. 44.

    Wohlfahrt-Veje C, Main K, Schmidt I, Boas M, Jensen T, Grandjean P, Skakkebaek N, Andersen H: Lower birth weight and increased body fat at school age in children prenatally exposed to modern pesticides: a prospective study. Environ Health 2011, 10(1):79.

    https://dx.doi.org/10.1186%2F1476-069X-10-79
  44. 45.

    European Food Safety Authority: Cadmium dietary exposure in the European population. EFSA Journal 2012, 10(1):2551.

    https://doi.org/10.2903/j.efsa.2012.2551
  45. 46.

    Akesson A, Barregard L, Bergdahl IA, Nordberg GF, Nordberg M, Skerfving S: Non-renal effects and the risk assessment of environmental cadmium exposure. Environ Health Perspect 2014, 122(5):431-438.

    https://doi.org/10.1289/ehp.1307110
  46. 47.

    Grant CA: Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Phosphate in Soils: Interaction with Micronutrients, Radionuclides and Heavy Metals 2015, 2:123.

    https://www.taylorfrancis.com/books/e/9781351228909/chapters/10.1201/9781351228909-9
  47. 48.

    Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mäder P, Stolze M, Smith P, Scialabba NE-H et al: Enhanced top soil carbon stocks under organic farming. PNAS 2012, 109(44):18226-18231.

    https://doi.org/10.1073/pnas.1209429109
  48. 49.

    Fließbach A, Oberholzer H-R, Gunst L, Mäder P: Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems & Environment 2007, 118(1-4):273-284.

    http://doi.org/10.1016/j.agee.2006.05.022
  49. 50.

    SCB 2019: Försäljning av mineralgödsel för jord- och trädgårdsbruk under 2017/18

    https://www.scb.se/contentassets/1ced554a5cf742c38b241f4ceb6d220d/mi1002_2017b18_sm_mi30sm1901.pdf
  50. 51.

    Karlsson I, Friberg H, Steinberg C, Persson P: Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One 2014, 9(11):e111786.

    https://doi.org/10.1371/journal.pone.0111786
  51. 52.

    Karlsson I, Friberg H, Kolseth AK, Steinberg C, Persson P: Organic farming increases richness of fungal taxa in the wheat phyllosphere. Molecular ecology 2017, 26(13):3424-3436.

    https://doi.org/10.1111/mec.14132
  52. 53.

    European Food Safety Authority: Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017, 15(9):4718.

    https://doi.org/10.2903/j.efsa.2017.4718
  53. 55.

    Österberg J, Wingstrand A, Nygaard Jensen A, Kerouanton A, Cibin V, Barco L, Denis M, Aabo S, Bengtsson B: Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries. PLOS ONE 2016, 11(6):e0157049.

    https://doi.org/10.1371/journal.pone.0157049
  54. 56.

    Cully M: PUBLIC HEALTH The politics of antibiotics. Nature 2014, 509(7498):S16-S17.

    https://doi.org/10.1038/509S16a
  55. 57.

    European Food Safety Authority (EFSA): ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA Journal 2017, 15(7):4872.

    https://doi.org/10.2903/j.efsa.2017.4872
  56. 58.

    Gunnarsson S, Nordlund Othén J: Klok antibiotikaanvändning till våra lantbruksdjur - Kan ekologisk djurhållning visa vägen för att minska risken för resistens? In.; 2017.

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/antibiotika.pdf
  57. 59.

    Fromm S, Beißwanger E, Käsbohrer A, Tenhagen B-A: Risk factors for MRSA in fattening pig herds – A meta-analysis using pooled data. Preventive Veterinary Medicine 2014, 117(1):180-188.

    https://doi.org/10.1016/j.prevetmed.2014.08.014
  58. 60.

    Hegelund L: Medicinforbrug og dødelighed i økologisk og konventionel slagtesvineproduktion. Sundhed og medicinforbrug hos økologiske og konventionelle slagtesvin 2006:13-16.

    https://pure.au.dk/portal/da/persons/lene-hegelund(1177828f-1a91-4c49-84e4-4640d83a58f1)/publications/medicinforbrug-og-doedelighed-i-oekologisk-og-konventionel-slagtesvineproduktion(506b3910
  59. 61.

    Wingstrand A, Struve T, Lundsby K, Vigre H, Emborg HD, Sørensen AIV, Jensen VF: Antibiotikaresistens og -forbrug i slagtesvineproduktionen. In: Fremtidens fødevaresikkerhed- Nye veje mod sikrere kød i Danmark. Center for Bioetik og Risikovurdering, Denmark; 2010: 98-106.

  60. 62.

    Bennedsgaard TW, Klaas IC, Vaarst M: Reducing use of antimicrobials - Experiences from an intervention study in organic dairy herds in Denmark. . Livestock Science 2010, 131:183-192.

    https://doi.org/10.1016/j.livsci.2010.03.018
  61. 63.

    Kuipers A, Koops W, Wemmenhove H: Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. Journal of dairy science 2016, 99(2):1632-1648.

    https://doi.org/10.3168/jds.2014-8428
  62. 64.

    FAOSTAT 2019. Pesticides use, FAOSTAT, Food and Agriculture Organization of the United Nations. 

    http://www.fao.org/faostat/en/#data/RP
  63. 65.

    P Schreinemachers & P Tipraqsa 2012. "Agricultural pesticides and land use intensification in high, middle and low income countries", Food Policy 37:616–626. 

    https://doi.org/10.1016/j.foodpol.2012.06.003
  64. 66.

    Regeringen 2019. Sveriges nationella handlingsplan för hållbar användning av växtskyddsmedel för perioden 2019-2022.

    https://www.regeringen.se/informationsmaterial/2019/04/sveriges-nationella-handlingsplan-for-hallbar-anvandning-av-vaxtskyddsmedel-for-perioden-2019-2022/
  65. 67.

    SCB 2018. Växtskyddsmedel i jord- och trädgårdsbruket 2017. Användning i grödor. Statistiska meddelanden MI 31 SM 1802, Statistiska Centralbyrån. 

    https://www.scb.se/contentassets/5cb7b388b27e487a883a7e079f8cd7b6/mi0502_2016i20_sm_mi31sm1802.pdf
  66. 68.

    J Ascard, K Löfkvist, A Mie & M Wivstad 2017. Växtskyddsmedel i ekologisk produktion - användning och risker, Centrum för ekologisk produktion och konsumtion (EPOK), Sveriges Lantbruksuniversitet. 

    https://pub.epsilon.slu.se/15706/1/ascard_et_al_181015.pdf
  67. 69.

    EG 2009. Europaparlamentets och rådets direktiv 2009/128/EG. EU:s åtgärder för att uppnå hållbar användning av bekämpningsmedel.

     

    https://eur-lex.europa.eu/legal-content/SV/LSU/?uri=CELEX:32009L0128
  68. 70.

    SIGILL kvalitetssystem AB 2020.

    https://www.sigill.se/
  69. 72.

    S Furenhed 2019. Allmänkemikalier 2019, Jordbruksverket, mars 2019. 

    https://webbutiken.jordbruksverket.se/sv/artiklar/allmankemikalier.html
  70. 73.

    EU 2018. Europaparlamentets och Rådets förordning (EU) 2018/848 om ekologisk produktion och märkning av ekologiska produkter.

    https://eur-lex.europa.eu/legal-content/SV/TXT/PDF/?uri=CELEX:02018R0848-20180614&qid=1568104702739&from=SV
  71. 74.

    Jordbruksverket 2019. Ekologisk växtodling 2018. Omställda arealer och arealer under omställning. Sveriges officiella statistik, Statistiska meddelanden, JO 13 SM 1901.

    https://www.scb.se/contentassets/4cd55499cc8d417d975775e02076e9ff/jo0114_2018a01_sm_jo13sm1901.pdf
  72. 76.

    J Socorro et al 2016. "The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue", Scientific Reports 6:33456. 

    https://doi.org/10.1038/srep33456
  73. 77.

    M Åkesson et al 2014. "On the scope and management of pesticide pollution of Swedish groundwater resources: The Scanian example", Ambio 44:226–238. 

    https://doi.org/10.1007/s13280-014-0548-1
  74. 78.

    CKB 2020. Nationell miljöövervakning av bekämpningsmedel (växtskyddsmedel) i miljön, Institutionen för vatten och miljö, Sveriges Lantbruksuniversitet.

    https://www.slu.se/centrumbildningar-och-projekt/SLU-Centrum-for-kemiska-bekampningsmedel-i-miljon/information-om-bekampningsmedel-i-miljon1/
  75. 79.

    Nanos & Kreuger 2019. Resultat från miljöövervakningen av bekämpningsmedel (växtskyddsmedel). Årssammanställning 2017. Rapport 2019:1, Vatten och miljö, SLU.

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/mo-rapporter/ivm-2019_1-nmo-resultat-2017.pdf
  76. 80.

    Lindström, B., Larsson, M., Boye, K., Gönczi, M. och Kreuger, J.  2015. Resultat från miljöövervakningen av bekämpningsmedel (växtskyddsmedel). Långtidsöversikt och trender 2002-2012 för ytvatten och sediment.  Rapport 2015:5, SLU, Institutionen för vatten och miljö.

    https://pub.epsilon.slu.se/12303/11/lindstrom_b_etal_150630.pdf
  77. 81.

    Goedkoop W & Kahlert M 2018. Undersökning av pesticidorsakade effekter på bentiska organismsamhällen i jord brukspåverkade vattendrag. CKB rapport 2018:2, Kompentenscentrum för kemiska bekämpningsmedel, SLU.

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/ckb-rapporter/goedkoop_kahlert_pesticidrapport-20182_slutversion.pdf
  78. 82.

    R B Schäfer et al 2007. "Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe", Science of the Total Environment 382:272–285. 

    https://doi.org/10.1016/j.scitotenv.2007.04.040
  79. 83.

    Rundlöf M, Lundin O & Bommarco R 2012. Växtskyddsmedelns påverkan på biologisk mångfald i jordbrukslandskapet. CKB rapport 2012:2. KompetensCentrum för Kemisk Bekämpning, SLU.

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/ckb-rapporter/ckb-biologisk-mangfald-slutlig-c.pdf
  80. 85.

    F Geiger et al 2010. "Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland", Basic and Applied Ecology 11:97–105.

    https://doi.org/10.1016/j.baae.2009.12.001
  81. 86.

    Tuck, S. L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L. A. and Bengtsson, J. (2014), Land‐use intensity and the effects of organic farming on biodiversity: a hierarchical meta‐analysis. J Appl Ecol, 51: 746-755.

    https://doi.org/10.1111/1365-2664.12219
  82. 87.

    KÜHNE, S., et al. 2016, Status Quo der Anwendung kupferhaltiger Pflanzenschutzmittel in der deutschen Landwirtschaft und dem Gartenbau. Journal für Kulturpflanzen, 68.7: 189-196.

    https://doi.org/10.5073/JfK.2016.07.01
  83. 88.

    Kronqvist M, Johansson E, Kolmodin-Hedman B, Öman H, Svartengren M, van Hage-Hamsten M 2005. IgE-sensitization to predatory mites and respiratory symptoms in Swedish greenhouse workers. European Journal of allergy and clinical immunology 60, 521-526.

    https://doi.org/10.1111/j.1398-9995.2004.00687.x
  84. 89.

    Seufert and Ramankutty 2017.  Many shades of grey–The context-dependent performance of organic agriculture. Sci. Adv. 2017;3: e1602638

    https://doi.org/10.1126/sciadv.1602638
  85. 90.

    Pietro Barbieri, Sylvain Pellerin & Thomas Nesme, 2017. Comparing crop rotations between organic and conventional farming. Nature Scientific REPOrTS | 7: 13761 |

    https://doi.org/10.1038/s41598-017-14271-6
  86. 91.

    Rasse, Daniel & Rumpel, Cornelia & Dignac, Marie-France. (2005). Is soil carbon mostly root carbon? Mechanisms for specific stabilization. Plant and Soil. 269. 341-356.

    https://doi.org/10.1007/s11104-004-0907-y
  87. 92.

    Thomas Kätterer, Martin Anders Bolinder, Olof Andrén, Holger Kirchmann, Lorenzo Menichetti, 2011 Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment, Agriculture, Ecosystems & Environment, Volume 141, Issues 1–2, Pages 184-192

    https://doi.org/10.1016/j.agee.2011.02.029
  88. 93.

    Verbruggen, E., Röling, W.F.M., Gamper, H.A., Kowalchuk, G.A., Verhoef, H.A. and van der Heijden, M.G.A. (2010), Positive effects of organic farming on below‐ground mutualists: large‐scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist, 186: 968-979.

    https://doi.org/10.1111/j.1469-8137.2010.03230.x
  89. 94.

    P. Gosling, A. Hodge, G. Goodlass, G.D. Bending (2006). Arbuscular mycorrhizal fungi and organic farming, Agriculture, Ecosystems & Environment, Volume 113, Issues 1–4, Pages 17-35,

    https://doi.org/10.1016/j.agee.2005.09.009
  90. 95.

    S Siegrist, D Schaub, L Pfiffner, P Mäder (1998) Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland, Agriculture, Ecosystems & Environment, Volume 69, Issue 3

    https://doi.org/10.1016/S0167-8809(98)00113-3
  91. 96.

    Klaus Birkhofer, T. Martijn Bezemer, Jaap Bloem, Michael Bonkowski, Søren Christensen, David Dubois, Fleming Ekelund, Andreas Fließbach, Lucie Gunst, Katarina Hedlund, Paul Mäder, Juha Mikola, Christophe Robin, Heikki Setälä, Fabienne Tatin-Froux, Wim H. Van der Putten, Stefan Scheu. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry. Volume 40, Issue 9. 2008. Pages 2297-2308, ISSN 0038-0717.

    https://doi.org/10.1016/j.soilbio.2008.05.007
  92. 97.

    Jan Eriksson, Lennart Mattson och Mats Söderström. 2010. Tillståndet i svensk åkermark och gröda, data från 2001-2007. Rapport Naturvårdsverket.

    https://www.naturvardsverket.se/Documents/publikationer/978-91-620-6349-8.pdf
  93. 98.

    Andreas Gattingera,1, Adrian Mullera, Matthias Haenia,b, Colin Skinnera, Andreas Fliessbacha, Nina Buchmannb, Paul Mädera, Matthias Stolzea, Pete Smithc, Nadia El-Hage Scialabbad, and Urs Nigglia. Enhanced top soil carbon stocks under organic farming. PNAS October 30, 2012 109 (44) 18226-18231.

    https://doi.org/10.1073/pnas.1209429109
  94. 99.

    Neal R. Haddaway, Katarina Hedlund, Louise E. Jackson, Thomas Kätterer, Emanuele Lugato, Ingrid K. Thomsen, Helene B. Jørgensen and Per‐Erik Isberg. How does tillage intensity a ect soil organic carbon? A systematic review. Environ Evid (2017) 6:30.

    https://doi.org/10.1186/s13750-017-0108-9
  95. 100.

    Kallenbach, C.M., Frey, S.D. & Grandy, A.S. (2018) Author Correction: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 9, 3929.

    https://doi.org/10.1038/s41467-018-06427-3
  96. 101.

    Liang, C, Amelung, W, Lehmann, J, Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Change Biol. 2019; 25: 3578– 3590. 

    https://doi.org/10.1111/gcb.14781
  97. 102.

    Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A (2017) Organic farming enhances soil microbial abundance and activity—A meta- analysis and meta-regression. PLoS ONE 12(7): e0180442.

    https://doi.org/10.1371/journal.pone.0180442
  98. 103.

    Paul Mäder, Andreas Fließbach,  David Dubois, Lucie Gunst, Padruot Fried, Urs Niggli. Soil Fertility and Biodiversity in Organic Farming. Science 296, 1694 (2002)

    https://doi.org/10.1126/science.1071148
  99. 104.

    Reganold, J., Wachter, J. Organic agriculture in the twenty-first century. Nature Plants 2, 15221 (2016).

    https://doi.org/10.1038/nplants.2015.221
  100. 105.

    Schader, Christian, Stolze, Matthias & Gattinger, Andreas. 2012. Environmental performance of organic farming. 10.1007/978-1-4614-1587-9_8. I bok? J.I. Boye and Y. Arcand (eds.), Green Technologies in Food Production and Processing, 183 Food Engineering Series

    https://doi.org/10.1007/978-1-4614-1587-9_8
  101. 106.

    Per Schjønning, Susanne Elmholt, Lars J. Munkholm, Kasia Debosz. 2002. Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management. Agriculture, Ecosystems and Environment 88 (2002) 195–214

    https://doi.org/10.1016/S0167-8809(01)00161-X
  102. 108.

    Elin Röös, 2019. Kor och klimat. SLU, EPOK - Centrum för ekologisk produktion och konsumtion.

    https://www.slu.se/epok
  103. 109.

    Smith, P., House, J.I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M.F., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bondeau, A., Jain, A.K., Meersmans, J. and Pugh, T.A.M. (2016), Global change pressures on soils from land use and management. Glob Change Biol, 22: 1008-1028.

    https://doi.org/10.1111/gcb.13068
  104. 110.

    H.L. Tuomisto, I.D. Hodge, P. Riordan, D.W. Macdonald. 2012. Does organic farming reduce environmental impacts? e A meta-analysis of European research. Journal of Environmental Management 112 (2012) 309e320

    https://doi.org/10.1016/j.jenvman.2012.08.018
  105. 111.

    Alwyn Williams, Katarina Hedlund. 2013. Indicators of soil ecosystem services in conventional and organic arable fields along a gradient of landscape heterogeneity in southern Sweden. Applied Soil Ecology, Volume 65, 2013, Pages 1-7, ISSN 0929-1393,

    https://doi.org/10.1016/j.apsoil.2012.12.019
  106. 112.

    Maria Wivstad, Eva Salomon, Johanna Spångberg och Håkan Jönsson. 2009. Ekologisk produktion – möjligheter att minska övergödning. Centrum för uthålligt lantbruk, SLU.

    https://www.slu.se/centrumbildningar-och-projekt/epok-centrum-for-ekologisk-produktion-och-konsumtion/publikationer/publikationer-fran-cul-centrum-for-uthalligt-lantbruk/
  107. 113.

    Blakemore, Robert. (2018). Critical Decline of Earthworms from Organic Origins under Intensive, Humic SOM-Depleting Agriculture. Soil Systems. 2. 33.

    https://doi.org/10.3390/soilsystems2020033
  108. 114.

    Dainese et al., 2019. A global synthesis reveals biodiversity-mediated benefits for crop production Science Advances 16 Oct 2019: Vol. 5, no. 10, eaax0121

    https://doi.org/10.1126/sciadv.aax0121
  109. 115.

    Fraanje, W. (2018). What is the land sparing-sharing continuum? (Foodsource: building blocks). Food Climate Research Network, University of Oxford.

    https://www.foodsource.org.uk/building-blocks/what-land-sparing-sharing-continuum
  110. 116.

    Galván, G. A., Parádi, I., Burger, K., Baar, J., Kuyper, T. W., Scholten, O. E., & Kik, C. (2009). Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza, 19(5), 317–328.

    https://doi.org/10.1007/s00572-009-0237-2
  111. 117.

    P. Gosling, A. Hodge, G. Goodlass, G.D. Bending, Arbuscular mycorrhizal fungi and organic farming, Agriculture, Ecosystems & Environment, Volume 113, Issues 1–4, 2006, Pages 17-35, ISSN 0167-8809,

    https://doi.org/10.1016/j.agee.2005.09.009
  112. 118.

    Ulrich Irmler, Changes in earthworm populations during conversion from conventional to organic farming, Agriculture, Ecosystems & Environment, Volume 135, Issue 3, 2010, Pages 194-198, ISSN 0167-8809

    https://doi.org/10.1016/j.agee.2009.09.008
  113. 119.

    Mueller, C., de Baan, L. & Koellner, T. Comparing direct land use impacts on biodiversity of conventional and organic milk—based on a Swedish case study. Int J Life Cycle Assess 19, 52–68 (2014)

    https://doi.org/10.1007/s11367-013-0638-5
  114. 120.

    Lukas Pfiffner, Henryk Luka, Earthworm populations in two low-input cereal farming systems, Applied Soil Ecology,Volume 37, Issue 3, 2007, Pages 184-191, ISSN 0929-1393

    https://doi.org/10.1016/j.apsoil.2007.06.005
  115. 121.

    Pfiffner, Lukas & Mäder, Paul. (1997). Effects of Biodynamic, Organic and Conventional Production Systems on Earthworm Populations. Biological Agriculture and Horticulture. 15. 2-10.

    https://doi.org/10.1080/01448765.1997.9755177
  116. 122.

    Tuck, S. L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L. A. and Bengtsson, J. (2014), Land‐use intensity and the effects of organic farming on biodiversity: a hierarchical meta‐analysis. J Appl Ecol, 51: 746-755.

    https://doi.org/10.1111/1365-2664.12219
  117. 123.

    Verbruggen, E., Röling, W.F.M., Gamper, H.A., Kowalchuk, G.A., Verhoef, H.A. and van der Heijden, M.G.A. (2010), Positive effects of organic farming on below‐ground mutualists: large‐scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist, 186: 968-979.

    https://doi.org/10.1111/j.1469-8137.2010.03230.x
  118. 124.

    Winqvist, C., Bengtsson, J., Aavik, T., Berendse, F., Clement, L., Eggers, S., Bommarco, R. (2011). Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of Applied Ecology, 48(3), 570-579.

    https://www.jstor.org/stable/20869978
  119. 125.

    Winqvist Camilla. 2013. Ekologiskt lantbruk, biologisk mångfald och ekosystemtjänster – i ett landskapsperspektiv. EPOK

    https://www.slu.se/epok
  120. 126.

    Blicharska, M., Smithers, R., Mikusiński, G., Rönnbäck, P., Harrison, P., Nilsson, M., & Sutherland, W. (2019). Biodiversity’s contributions to sustainable development. Nature Sustainability, 1–11.

    https://doi.org/10.1038/s41893-019-0417-9
  121. 127.

    Francisco Sánchez-Bayoa, Kris A.G. Wyckhuysb,c,d Biological Conservation 232 (2019) 8–27 Worldwide decline of the entomofauna: A review of its drivers

    https://doi.org/10.1016/j.biocon.2019.01.020
  122. 128.

    Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, et al. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10): e0185809.

    https://doi.org/10.1371/journal.pone.0185809
  123. 129.

    Kremen, C. (2015), Reframing the land‐sparing/land‐sharing debate for biodiversity conservation. Ann. N.Y. Acad. Sci., 1355: 52-76.

    https://doi.org/10.1111/nyas.12845
  124. 130.

    Anne-Christine Mupepele, Helge Bruelheide, Jens Dauber, Andreas Krüß, Thomas Potthast, Wolfgang Wägele, Alexandra-Maria Klein, Insect decline and its drivers: Unsupported conclusions in a poorly performed meta-analysis on trends—A critique of Sánchez-Bayo and Wyckhuys (2019), Basic and Applied Ecology, Volume 37, 2019, Pages 20-23, ISSN 1439-1791,

    https://doi.org/10.1016/j.baae.2019.04.001
  125. 131.

    Sandström, J., Bjelke, U., Carlberg, T. & Sundberg, S. 2015. Tillstånd och trender för arter och deras livsmiljöer – rödlistade arter i Sverige 2015. ArtDatabanken Rapporterar 17. ArtDatabanken, SLU. Uppsala

    https://www.artdatabanken.se/publikationer/bestall-publikationer/tillstand-och-trender-for-arter-och-deras-livsmiljoer-rodlistade-arter-i-sverige-2015/
  126. 132.

    Van Wagenberg, C., De Haas, Y., Hogeveen, H., Van Krimpen, M., Meuwissen, M., Van Middelaar, C., & Rodenburg, T. (2017). Animal Board Invited Review: Comparing conventional and organic livestock production systems on different aspects of sustainability. Animal, 11(10), 1839-1851.

    https://doi.org/10.1017/S175173111700115X
  127. 133.

    FAO. 2018. The future of food and agriculture – Alternative pathways to 2050. Rome. 224 pp. Licence: CC BY-NC-SA 3.0 IGO.

    http://www.fao.org/publications/fofa/en/
  128. 134.

    IPCC 2019 Climate change and land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

    https://www.ipcc.ch/srccl/
  129. 135.

    Johan O. Karlsson, Elin Röös, Resource-efficient use of land and animals—Environmental impacts of food systems based on organic cropping and avoided food-feed competition, Land Use Policy, Volume 85, 2019, Pages 63-72, ISSN 0264-8377

    https://doi.org/10.1016/j.landusepol.2019.03.035
  130. 136.

    Karlsson, J.O., Carlsson, G., Lindberg, M. et al. Designing a future food vision for the Nordics through a participatory modeling approach. Agron. Sustain. Dev. 38, 59 (2018).

    https://doi.org/10.1007/s13593-018-0528-0
  131. 137.

    Sigrun Dahlin, Holger Kirchmann, Thomas Kätterer, Sophie Gunnarsson, and Lars Bergström "Possibilities for Improving Nitrogen Use From Organic Materials in Agricultural Cropping Systems," AMBIO: A Journal of the Human Environment 34(4), 288-295, (1 June 2005).

    https://doi.org/10.1579/0044-7447-34.4.288
  132. 138.

    J. A. Foley, N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. Mueller, C. O’Connell, D. K. Ray, P. C. West, C. Balzer, E. M. Bennett, S. R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, D. P. M. Zaks, 2011. Solutions for a cultivated planet. Nature 478, 337–342.

    https://doi.org/10.1038/nature10452
  133. 139.

    FAO, IFAD and WFP 2015. The State of Food Insecurity in the World 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. Rome, FAO.

    http://www.fao.org/3/a-i4646e.pdf
  134. 140.

    Holt-Giménez E, A Shattuck A, Altieri M, Herren H & Gliessman S 2012. We Already Grow Enough Food for 10 Billion People … and Still Can't End Hunger. Journal of Sustainable Agriculture, 36:6, 595-598

    https://doi.org/10.1080/10440046.2012.695331
  135. 141.

    IAASTD 2009. International assessment of agricultural knowledge, science and technology for development:global report. Eds: McIntyre BD, Herren HR, Wakhungu J & Watson RT, Washington DC, Island press.

    https://www.weltagrarbericht.de/fileadmin/files/weltagrarbericht/IAASTDBerichte/GlobalReport.pdf
  136. 142.

    Hansson I, Hamilton C, Ekman T, Forslund K (2000) Carcass quality in certified organic production compared with conventional livestock production. J Vet Med Series B Infect Dis Vet Public Health 47(2):111–120.

    https://doi.org/10.1046/j.1439-0450.2000.00313.x
  137. 143.

    Meier MS, Stoessel F, Jungbluth N, Juraske R, Schader C & Stolze M 2015. Environmental impacts of organic and conventional agriculturalproducts – Are the differences captured by life cycle assessment? Journal of Environmental Management 149 (2015) 193-208.

    https://doi.org/10.1016/j.jenvman.2014.10.006
  138. 144.

    Muller A, Schader C, El-Hage Scialabba N, Brüggemann J, Isensee A, Erb K-H, Smith P, Klocke P, Leiber F, Stolze M & Niggli U 2017. Strategies for feeding the world more sustainably with organic agriculture. Nature communications 8:1290.

    https://doi.org/10.1038/s41467-017-01410-w
  139. 145.

    Niggli U, Schmidt J, Watson C et al. 2016. Organic knowledge network arable. State-of-the-art research results and best practices. Report D.3.1.

    http://www.ok-net-arable.eu/images/OK_Net_WP3_D3.1_final.pdf
  140. 146.

    Ponisio LC,M’Gonigle LK, MaceKC, Palomino J, deValpine P, Kremen C (2014) Diversification practices reduce organic to conventional yield gap. Proc R Soc B 282:20141396.

    https://doi.org/10.1098/rspb.2014.1396
  141. 147.

    de Ponti T, Rijk B, van Ittersum MK (2012) The crop yield gap between organic and conventional agriculture. Agric Syst 108:1–9.

    https://www.sciencedirect.com/science/article/pii/S0308521X1100182X
  142. 148.

    Röös E, Mie A, Wivstad M, Salomon E, Johansson B, Gunnarsson5 S, Wallenbeck A, Hoffmann R, Nilsson U, Sundberg C, Watson CA 2018.Risks and opportunities of increasing yields in organic farming. A review. Agronomy for Sustainable Development 38:14.

    https://doi.org/10.1007/s13593-018-0489-3
  143. 149.

    SCB 2017. Gödselmedel i jordbruket 201SCB 2017. Gödselmedel i jordbruket 2015/16. Mineral- och stallgödesel till olika grödor samt hantering och lagring av stallgödsel. Statistiska meddelanden MI 30 SM 1702.

    https://www.scb.se/contentassets/de0a511d532a4a32ab921f4d034f260b/mi1001_2015b16_sm_mi30sm1702.pdf
  144. 150.

    SCB, 2019. Skörd för ekologisk och konventionell odling 2018 - Spannmål, trindsäd, oljeväxter, matpotatis och slåttervall.  JO 14 SM 1901. Jordbruksverket och SCB, 109 sidor.

    https://www.scb.se/contentassets/c37559bf147944b5822681df7d09c97b/jo0608_2018a01_sm_jo14sm1901.pdf
  145. 151.

    Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232.

    https://doi.org/10.1038/nature11069
  146. 152.

    Tuomisto HL, Hodge ID, Riordan P & Macdonald DW 2012. Does organic farming reduce environmental impacts? – A meta-analysis of European research. Journal of Environmental Management 112, 309-320

    http://dx.doi.org/10.1016/j.jenvman.2012.08.018
  147. 153.

    Shukla PR, Skea J, Slade R, van Diemen R, Haughey E, Malley J, Pathak M, Portugal Pereira J (eds.) Technical Summary, 2019. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M, Belkacemi, J. Malley, (eds.)]. In press.

    https://www.ipcc.ch/site/assets/uploads/2019/11/03_Technical-Summary-TS.pdf
  148. 154.

    Willet W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S et al 2019. Food in the anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393 (10170) 447-492.

    https://doi.org/10.1016/S0140-6736(18)31788-4
  149. 155.

    Wivstad M, Salomon E, Spångberg J & Jönsson H 2009. Ekologisk produktion - möjligheter att minska övergödning. Centrum för uthålligt lantbruk, Sveriges Lantbruksuniversitet. 

    https://www.slu.se/epok
  150. 156.

    Växa Sverige (2019) Husdjursstatistik 2019. (“Cattle statistics 2019”). Växa Sverige, Uppsala.

     

    https://www.vxa.se/fakta/styrning-och-rutiner/mer-om-mjolk/
  151. 157.

    FAOSTAT 2019. Pesticides use, FAOSTAT, Food and Agriculture Organization of the United Nations. 

    http://www.fao.org/faostat/en/#data/RP
  152. 158.

    P Schreinemachers & P Tipraqsa 2012. "Agricultural pesticides and land use intensification in high, middle and low income countries", Food Policy 37:616–626. 

    https://doi.org/10.1016/j.foodpol.2012.06.003
  153. 160.

    SCB 2018. Växtskyddsmedel i jord-och trädgårdsbruket 2017 Användning i grödor.

    https://www.scb.se/contentassets/5cb7b388b27e487a883a7e079f8cd7b6/mi0502_2016i20_sm_mi31sm1802.pdf
  154. 161.

    EG 2009. Europaparlamentets och rådets direktiv 2009/128/EG. EU:s åtgärder för att uppnå hållbar användning av bekämpningsmedel.

    https://eur-lex.europa.eu/legal-content/SV/LSU/?uri=CELEX:32009L0128
  155. 162.

    SIGILL kvalitetssystem AB 2020

    https://www.sigill.se/
  156. 163.

    Jordbruksverket 2014. Statens jordbruksverks föreskrifter och allmänna råd om integrerat växtskydd

    http://www.jordbruksverket.se/download/18.ac526c214a28250ac22a00a/1418030482089/2014-042.pdf
  157. 164.

    Kemikalieinspektionen 2020. Växtskyddsmedel

    https://www.kemi.se/bekampningsmedel/vaxtskyddsmedel
  158. 165.

    Jordbruksverket 2019. Jordbruksstatistisk sammanställning 2019, kapitel 11, Ekologisk produktion

    http://www.jordbruksverket.se/download/18.26abb9db16b94164c6c44d5a/1561635267372/Kapitel%2011%20Ekologisk%20produktion.pdf
  159. 166.

    SCB 2018. Växtskyddsmedel i jord- och trädgårdsbruket 2017. Användning i grödor. Statistiska meddelanden MI 31 SM 1802, Statistiska Centralbyrån. 

    https://www.scb.se/contentassets/5cb7b388b27e487a883a7e079f8cd7b6/mi0502_2016i20_sm_mi31sm1802.pdf
  160. 167.

    Jordbruksverket 2019. Ekologisk växtodling 2018. Omställda arealer och arealer under omställning. Sveriges officiella statistik, Statistiska meddelanden, JO 13 SM 1901.

    https://www.scb.se/contentassets/4cd55499cc8d417d975775e02076e9ff/jo0114_2018a01_sm_jo13sm1901.pdf
  161. 170.

    KEMI 2019. Försålda kvantiteter av bekämpningsmedel 2018, Kemikalieinspektionen.

    https://www.kemi.se/statistik/forsalda-kvantiteter-av-bekampningsmedel
  162. 171.

    P Einarsson 2017. Kemiska bekämpningsmedel i jordbruket – Fakta om användningen i Sverige 1981-2016, Naturskyddsföreningen. 

     

    https://www.naturskyddsforeningen.se/sites/default/files/dokument-media/rapport_kemiska_bekampningsmedel_2017.pdf
  163. 172.

    J Socorro et al 2016. "The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue", Scientific Reports 6:33456.

    https://doi.org/10.1038/srep33456
  164. 173.

    M Åkesson et al 2014. "On the scope and management of pesticide pollution of Swedish groundwater resources: The Scanian example", Ambio 44:226–238.

    https://doi.org/10.1007/s13280-014-0548-1
  165. 174.

    CKB 2020. Nationell miljöövervakning av bekämpningsmedel (växtskyddsmedel) i miljön, Institutionen för vatten och miljö, Sveriges Lantbruksuniversitet.

    https://www.slu.se/centrumbildningar-och-projekt/kompetenscentrum-for-kemiska-bekampningsmedel/information-om-bekampningsmedel-i-miljon1/
  166. 175.

    Nanos & Kreuger 2019. Resultat från miljöövervakningen av bekämpningsmedel (växtskyddsmedel). Årssammanställning 2017. Rapport 2019:1, Vatten och miljö, SLU.

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/mo-rapporter/ivm-2019_1-nmo-resultat-2017.pdf
  167. 176.

    Lindström, B., Larsson, M., Boye, K., Gönczi, M. och Kreuger, J.  2015. Resultat från miljöövervakningen av bekämpningsmedel (växtskyddsmedel). Långtidsöversikt och trender 2002-2012 för ytvatten och sediment.  Rapport 2015:5, SLU, Institutionen för vatten och miljö.

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/mo-rapporter/trender-i-mo-150521_final.pdf
  168. 177.

    Goedkoop W & Kahlert M 2018. Undersökning av pesticidorsakade effekter på bentiska organismsamhällen i jord brukspåverkade vattendrag. CKB rapport 2018:2, Kompentenscentrum för kemiska bekämpningsmedel, SLU.

    https://pub.epsilon.slu.se/15939/7/goedkoop_w_kahlert_m_190228.pdf
  169. 178.

    R B Schäfer et al 2007. "Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe", Science of the Total Environment 382:272–285. 

    https://doi.org/10.1016/j.scitotenv.2007.04.040
  170. 179.

    Rundlöf M, Lundin O & Bommarco R 2012. Växtskyddsmedelns påverkan på biologisk mångfald i jordbrukslandskapet. CKB rapport 2012:2. KompetensCentrum för Kemisk Bekämpning, SLU.

    https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/ckb-rapporter/ckb-biologisk-mangfald-slutlig-c.pdf
  171. 181.

    Tuck, S. L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L. A. and Bengtsson, J. (2014), Land‐use intensity and the effects of organic farming on biodiversity: a hierarchical meta‐analysis. J Appl Ecol, 51: 746-755.

    https://doi.org/10.1111/1365-2664.12219
  172. 182.

    FAO, 2011. Organic agriculture and climate change mitigation. A report of the Round Table on Organic Agriculture and Climate Change.

    http://www.fao.org/3/i2537e/i2537e00.pdf
  173. 183.

    Clark M, Tilman D 2017. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice

    https://doi.org/10.1088/1748-9326/aa6cd5
  174. 184.

    Cederberg C, Wallman M, Berglund M & Gustavsson J 2011. Klimatavtryck av ekologiska jordbruksprodukter. SIK-rapport Nr 8302011

    https://www.diva-portal.org/smash/get/diva2:943924/FULLTEXT01.pdf
  175. 185.

    Wivstad M, Salomon E, Spångberg J, Jönsson H 2009. Ekologisk produktion– möjligheter att minska övergödning

    https://www.slu.se/globalassets/ew/org/centrb/epok/aldre-bilder-och-dokument/publikationer/eko-prod-overgodning-syntes-web.pdf
  176. 186.

    Jordbruksverket 2020. Rekommendationer för gödsling och kalkning

    https://www2.jordbruksverket.se/download/18.6fd5d28c16f8ba7a70b48310/1578649240143/jo19_12v2.pdf
  177. 187.

    Växa Sverige (2020) Husdjursstatistik 2020. (“Cattle statistics 2020”). Växa Sverige, Uppsala.

    https://www.vxa.se/fakta/styrning-och-rutiner/mer-om-mjolk/
  178. 188.

    Elin Röös, Cecilia Sundberg, Eva Salomon och Maria Wivstad 2013 Ekologisk produktion och klimatpåverkan – En sammanställning av kunskapsläge och framtida forskningsbehov

    https://www.slu.se/globalassets/ew/org/centrb/epok/aldre-bilder-och-dokument/publikationer/eko-prod-o-klimatp-webb.pdf
  179. 189.

    Tomek de Ponti, Bert Rijk, Martin K. van Ittersum (2012) The crop yield gap between organic and conventional agriculture

    http://dx.doi.org/10.1016/j.agsy.2011.12.004
  180. 190.

    Searchinger, T.D., Wirsenius, S., Beringer, T. et al. Assessing the efficiency of changes in land use for mitigating climate change.

    https://doi.org/10.1038/s41586-018-0757-z
  181. 191.

    Alberto G. O. P. Barretto, Göran Berndes, Gerd Sparovek, Stefan Wirsenius 2013 Agricultural intensification in Brazil and its effects on land‐use patterns: an analysis of the 1975–2006 period

    https://doi.org/10.1111/gcb.12174
  182. 192.

    Elin Röös, Bojana Bajželj, Pete Smith, Mikaela Patel, David Little, Tara Garnett, 2017. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures,

    https://doi.org/10.1016/j.gloenvcha.2017.09.001
  183. 193.

    SCB 2019, Ekologisk växtodling 2018 Omställda arealer och arealer under omställning

    https://www.scb.se/contentassets/4cd55499cc8d417d975775e02076e9ff/jo0114_2018a01_sm_jo13sm1901.pdf
  184. 195.

    Poeplau, C., Aronsson, H., Myrbeck, Å., Kätterer, T. (2015).  Effect of perennial ryegrass cover crop on soil organic carbon stocks in southern Sweden. Geoderma Regional 4: 126–133. 

    https://doi.org/10.1016/j.geodrs.2015.01.004
  185. 195.

    Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: a critical re‐examination to identify the true and the false European Journal of Soil Science, 62(1), 42-55.

    https://doi.org/10.1111/j.1365-2389.2010.01342.x
  186. 196.

    Röös 2019. Kor och klimat. Centrum för ekologisk produktion och konsumtion, Epok, SLU

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/koroklimat_web.pdf
  187. 197.

    EG 2007. Rådets förordning (EG) nr 834/2007 om ekologisk produktion och märkning av ekologiska produktier.

    https://eur-lex.europa.eu/legal-content/SV/TXT/PDF/?uri=CELEX:02007R0834-20130701&qid=1565600243378&from=SV
  188. 198.

    SCB 2019. Växtskyddsmedel i jordbruket 2018. Beräknat antal hektardoser Statistiska meddelanden MI 31 SM 1901, Statistiska Centralbyrån.

    https://www.scb.se/publikation/38459
  189. 199.

    Jordbruksverket 2020. Växtskyddsåtgärder

    https://jordbruksverket.se/vaxter/odling/vaxtskydd/vaxtskyddsatgarder
  190. 200.
  191. 201.

    Rundlöf M & Lundin O 2019. Can costs of  pesticide exposure for bumblebees be balanced by benefits from a mass-flowering crop? Environmental Science & Technology 53, 14144-14151.

     

    https://pubs.acs.org/doi/pdf/10.1021/acs.est.9b02789
  192. 202.

    Andersson  L & Ullvén U 2019. Rotogräsens När Var Hur. En guide till icke-kemisk bekämpning av perenna ogräs. SLU Ekologisk produktion och konsumtion, Uppsala.

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/ograsskrift_web.pdf
  193. 203.

    Jorbruksverket, exempel på skrifter om ogräsbekämpning: Ståhl P 2018. Rotogräs. Jordbruksinformation 13 – 2018. Jordbruksverket.

    https://webbutiken.jordbruksverket.se/sv/artiklar/jo1813.html
  194. 204.

    Nilsson U, Porcel M, Swirgel W & Wivstad M 2016. Habitat manipulation – as a pest management tool in vegetable and fruit cropping systems, with the focus on insects and mites. SLU Ekologisk produktion och konsumtion, Uppsala.

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/biokontrollsyntes_web.pdf
  195. 205.

    Nilsson U, Porcel M, Swirgel W & Wivstad M 2017. Förstärkt växtskydd med blommande växter – i grönsaks- och fruktodling. SLU Ekologisk produktion och konsumtion, Uppsala.

    https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/habitatmanipulering_se_webb.pdf
  196. 206.

    Kemikalieinspektionen 2020. Bekämpningsmedelsregistret.

    Sökväg: Användningsområde/Huvudgrupp- växtskyddsmedel; Undergrupp-biologiskt; Mikroorganismer; Resultatvy-ämne; Produktstatus- Har gällande godkännande

    https://apps.kemi.se/BkmRegistret/Kemi.Spider.Web.External/
  197. 208.

    CBC 2020. SLU centrum för biologisk bekämpning.

    https://www.slu.se/cbc
  198. 210.

    EG 2008. Kommissionens förordning (EG) nr 889/2008 om tillämpningsföreskrifter för rådets förordning (EG) nr 834/2007 om ekologisk produktion och märkning av ekologiska pro- dukter med avseende på ekologisk produktion, märkning och kontroll. Konsoliderad version 21 maj 2017. I Bilaga II, Bekämpningsmedel, finns lista på verksamma ämnen/ämnesgrupper tillåtna i ekologisk produktion. 

    https://eur-lex.europa.eu/legal-content/SV/ALL/?uri=CELEX%3A32008R0889
  199. 211.

    Jordbruksverket 2019. Bifarliga preparat i lantbruk och trädgårdsodling.

    https://www2.jordbruksverket.se/download/18.4137542a1690c8c625326932/1550740063616/ovr479v3.pdf
  200. 212.

    EPA 2017. Ecological Risk Management Rationale for Pyrethroids in Registration Review.

    https://www.regulations.gov/docket?D=EPA-HQ-OPP-2015-0752
  201. 214.

    Bernstein IL, Bernstein JA, Miller M, Tierzieva S, Bernstein DI, Lummus Z, Selgrade MK, Doerfler DL & Seligy VL 1999. Immune responses in farm workers after exposure to Bacillus thuringiensis pesticides. Environmental Health Perspectives. Jul;107(7):575.

    https://dx.doi.org/10.1289%2Fehp.99107575
  202. 215.

    Bengtsson J 2015. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecological Entomology 40 (1), 45-55.

    https://doi.org/10.1111/een.12247
  203. 216.

    Milleneum Ecosystem Assessment 2005. Ecosystems and human wellbeing. Biodiversity Synthesis.World Resources Institute, Washington, DC.

    https://www.millenniumassessment.org/documents/document.354.aspx.pdf
  204. 217.

    IPBES 2019. The global assessment report on biodiversity and ecosystem services, Summary for policy makers. Intergovernmental Science-Policy Plattform on Biodiversity and Ecosystem Services

    https://ipbes.net/sites/default/files/2020-02/ipbes_global_assessment_report_summary_for_policymakers_en.pdf
  205. 218.

    Gamfeldt L, Snäll t, Bagchi R et al. 2013. Higher ledvels of multiple ecosystem services are found in forests with more tree species. Nature communications 4:1340.

    https://doi.org/10.1038/ncomms2328
  206. 219.

    M. Loreau, S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman, D. A. Wardle, 2001. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges Science26 : 804-808

    http://science.sciencemag.org/content/294/5543/804
  207. 220.

    Sveriges miljömål, Ett rikt odlingslandskap.

    https://www.sverigesmiljomal.se/miljomalen/ett-rikt-odlingslandskap/
  208. 221.

    Jordbruksverket 2019. Ett rikt odlingslandskap. Fördjupad utvärdering 2019

    https://www2.jordbruksverket.se/download/18.4d4abf9b16871aa85b5ce3bf/1548332719871/ra18_31.pdf
  209. 222.

    Van Klink R, Bowler DE, Gingalasky KB, Swengel AB, Gentile A & Chase JM 2020. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances, Science 368 (6489), 417-420.

    https://www.x-mol.com/paperRedirect/1253455275865563136
  210. 223.

    Jonason D, Andersson GKS, Öckinger E, Rundlöf M. Smith HG & Bengtsson J 2011. Assessing the effects of the time since transition to organic farming on plants and butterflies. Journal of Applied Ecology 48, 543-550.

    https://doi.org/10.1111/j.1365-2664.2011.01989.x
  211. 224.

    Wolnicki K, Lesinski G & Rembialkowska E 2009. Birds inhabiting organic and conventional farms in central Poland. Acta zoological cracoviensia 52, 1-10.

    https://doi.org/10.3409/azc.52a_1-2.01-10
  212. 225.

    Smith HG, Dänhardt J, Lindström Å & Rundlöf M 2010. Consequences of organic farming and landscape heterogeneity for species richnessd and abundance of farmland birds. Oecologica 162, 1071-1079.

    https://doi.org/10.1007/s00442-010-1588-2
  213. 226.

    Manoharan L, Rosenstock NP, Williams A & Hedlund K 2017. Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity. Applied Soil Ecology 115, 53–59.

    https://doi.org/10.1016/j.apsoil.2017.03.012
  214. 227.

    Schneider KD, Lynch DH, Dunfield K, Khosla K, Jansa J & Voroney RP 2015. Farm system management affects community structure of arbuscular mycorrhizal fungi. Applied Soil Ecology 96:192–200

    http://dx.doi.org/10.1016/j.apsoil.2015.07.015
  215. 228.

    Ryan MH & Graham JH 2018. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytologist 220: 1092–1107.

    https://doi.org/10.1111/nph.15308
  216. 229.

    Barbieri P, Pellerin S, Seufert V & Nesme T 2019. Changes in crop rotation would impact food production in an organically farmed world. Nature Sustainability 2, 378-385.

    https://doi.org/10.1038/s41893-019-0259-5
  217. 230.

    The Food Climate Research Network (FCRN) –Foodsource 2018.

    https://www.foodsource.org.uk/building-blocks/what-land-sparing-sharing-continuum
  218. 231.

    SCB 2019. Jordbruksmarkens användning 2019. Slutlig statistik. Statistiska meddelanden JO 10 SM 1902. Producerad av Jordbruksverket.

    https://www.scb.se/contentassets/7621acf8c91f4632a7861ec3af0e02a5/jo0104_2019a01_sm_jo10sm1902.pdf
  219. 232.

    Rundlöf, M, Nilsson, H & Smith, H 2008, 'Interacting effects of farming practice and landscape context on bumble bees', Biological Conservation, vol. 141, no. 2, pp. 417-426.

    https://doi.org/10.1016/j.biocon.2007.10.011
  220. 233.

    Entz, Martin & Penner, K. & Vessey, Joseph & Zelmer, C. & Thiessen Martens, Joanne. 2004. Mycorrhizal colonization of flax under long-term organic and conventional management. Canadian Journal of Plant Science. 84. 1097-1099.

    https://doi.org/10.4141/P04-055
  221. 234.

    Bedini, S., Avio, L., Sbrana, C. et al. Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biol Fertil Soils 49, 781–790 (2013).

    https://doi.org/10.1007/s00374-012-0770-6
  222. 235.

    Maj Rundlöf, Janne Bengtsson, Henrik G. Smith, 2008, Local and landscape effects of organic farming on butterfly species richness and abundance

    https://doi.org/10.1111/j.1365-2664.2007.01448.x
  223. 236.

    EFSA (European Food Safety Authority), 2019. Scientific report on the 2017 European Union report on pesticide residues in food. EFSA Journal 2019;17(6):5743, 152 pp.

    https://doi.org/10.2903/j.efsa.2019.5743
  224. 237.

    Norén E, Lindh C, Rylander L, Glynn A, Axelsson J, Littorin M, Faniband M, Larsson E, Nielsen C: Concentrations and temporal trends in pesticide biomarkers in urine of Swedish adolescents, 2000–2017. Journal of exposure science & environmental epidemiology 2020:1-12.

    https://doi.org/10.1038/s41370-020-0212-8
  225. 238.

    Bjermo H, Gyllenhammar I, Lindh CH: Concentrations of phthalates and phenolic substances in urine from first-time mothers in Uppsala, Sweden: temporal trends 2009-2018. In.: Livsmedelsverket; 2019.

    http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Anaturvardsverket%3Adiva-8255
  226. 239.

    Centers for Disease Control and Prevention 2019: Fourth Report on Human Exposure to Environmental Chemicals, Updated Tables, January 2019. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention.

    https://www.cdc.gov/exposurereport/
  227. 240.

    Van Der Mark M, Brouwer M, Kromhout H, Nijssen P, Huss A, Vermeulen R: Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. Environmental health perspectives 2012, 120(3):340-347.

    https://doi.org/10.1289/ehp.1103881
  228. 241.

    Schinasi L, Leon ME: Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health 2014, 11(4):4449-4527

    https://doi.org/10.3390/ijerph110404449
  229. 242.

    Ntzani E, Chondrogiorgi M, Ntritss sG, Evangelou E, Tzoulaki I: Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA supporting publication 2013(2013:EN-497):159pp.

    https://doi.org/10.2903/sp.efsa.2013.EN-497
  230. 243.

    Gunnarsson L-G, Bodin L: Parkinson's disease and occupational exposures: a systematic literature review and meta-analyses. Scandinavian journal of work, environment & health 2017:197-209.

    https://doi.org/10.5271/sjweh.3641
  231. 244.

    Van Maele-Fabry G, Hoet P, Vilain F, Lison D: Occupational exposure to pesticides and Parkinson's disease: a systematic review and meta-analysis of cohort studies. Environ Int 2012, 46:30-43.

    https://doi.org/10.1016/j.envint.2012.05.004
  232. 245.

    Goldman L: Childhood pesticide poisoning: Information for advocacy and action. Geneva, Switzerland: United Nations Environment Programme and WHO 2004.

    https://www.who.int/ceh/publications/en/pestpoisoning.pdf
  233. 246.

    UN Human Rights Council: Report of the Special Rapporteur on the right to food. In: UN Human Rights Council, Geneva Switzerland 2017.

    https://www.ohchr.org/en/issues/food/pages/foodindex.aspx
  234. 248.

    Broman F, Halldin Ankarberg E, Bergkvist P: Hanteringsrapport gällande dioxin och dioxinlika PCB i ägg. Livsmedelsverket. In.; 2016.

    https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2016/hanteringsrapport-dioxin-och-dioxinlika-pcb-i-agg-2016.pdf
  235. 250.

    EFSA Panel on Contaminants in the Food Chain, Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L et al: Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA Journal 2018, 16(11):e05333.

    https://doi.org/10.2903/j.efsa.2018.5333
  236. 252.

    European Food Safety Authority: Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017, 15(9):4718.

    https://doi.org/10.2903/j.efsa.2017.4718
  237. 254.

    Mie A, Kesse-Guyot E, Rembialkowska W, Andersen HR, Grandjean P & Gunnarsson S 2016. Human health implications of organic food and organic agriculture. STUDY, Science and Technology Options Assessment, STOA, EPRS, European Parliament Research Service, Scientific Foresight Unit, PE 581.922.

     

    https://www.europarl.europa.eu/RegData/etudes/STUD/2016/581922/EPRS_STU(2016)581922_EN.pdf
  238. 255.

    van der Werf HMG, Trydeman Knudsen M & Cederberg C 2020. Towards bbetter representation of organic agriculture in life cycle assessment. Nature Sustainability, Perspecitves.

    https://doi.org/10.1038/s41893-020-0489-6
  239. 256.

    Stephen Clune, Enda Crossin, Karli Verghesec 2017, Systematic review of greenhouse gas emissions for different fresh food categories, Journal of Cleaner Production Volume 140, Part 2, 1 January 2017, Pages 766-783

    https://doi.org/10.1016/j.jclepro.2016.04.082
  240. 257.

    Björnberg, Odelros, Persson & Alarik 2005. Vägen mot 100 % ekologiskt foder till enkelmagade djur. Centrum för uthålligt lantbruk, SLU.

    https://www.slu.se/globalassets/ew/org/centrb/epok/aldre-bilder-och-dokument/publikationer/foderenkelmagade.pdf
  241. 258.

    Hu T, Sørensen P, Wahlström EM, Chirinda N, Sharif B, Li, X & Olesen JE 2018. Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass. Agriculture, Ecosystems and Environment 251, 141-148.

    http://dx.doi.org/10.1016/j.agee.2017.09.024
  242. 259.

    Andrén O, Kätterer T, Karlsson T & Eriksson J 2008. Soil C balances in Swedish agricultural soils 1990-2004, with preliminaray projections. Nutrient Cycling in Agroecosystems 81, 129-144.

    https://doi.org/10.1007/s10705-008-9177-z
  243. 260.

    McSherry, M.E. and Ritchie, M.E. (2013), Effects of grazing on grassland soil carbon: a global review. Glob Change Biol, 19: 1347-1357.

    https://doi.org/10.1111/gcb.12144
  244. 261.

    Fuss S, Lamb WF, Callahghan MW et al. 2018. Negative emissions–Part 2: Costs, potantials and side effects. Environmental Research Letters 13, 063002.

    https://doi.org/10.1088/1748-9326/aabf9f
  245. 264.

    Naturvårdsverket 2020. Utsläpp av växthusgaser från jordbruket.

    https://www.naturvardsverket.se/Sa-mar-miljon/Statistik-A-O/Vaxthusgaser-utslapp-fran-jordbruk/
  246. 265.
  247. 266.

    Moberg E, Karlsson Potter H, Wood A, Hansson PA, Röös E (2020) Benchmarking the Swedish Diet Relative to Global and National Environmental Targets—Identification of Indicator Limitations and Data Gaps. Sustainability 12, 1407.

    https://doi.org/10.3390/su12041407
  248. 268.

    Steinbach N, Palm V, Cederberg C m fl 2018. Miljöpåverkan från svensk konsumtion – nya indikatorer för uppföljning. Slutrapport för forskningsprojektet PRINCE. Rapport 6842, Naturvårdsverket.  

    https://www.naturvardsverket.se/Documents/publikationer6400/978-91-620-6842-4.pdf?pid=23308
  249. 269.

    Bryngelsson D, Wirsenius S, Hedenus F, Sonesson U (2016) How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture. Food Policy 59, 152-164.

    https://doi.org/10.1016/j.foodpol.2015.12.012
  250. 270.

    Hallström E, Carlsson-Kanyama A, Börjesson P (2015) Environmental impact of dietary change: a systematic review. Journal of Cleaner Production 91:1–11

    https://doi.org/10.1016/j.jclepro.2014.12.008
  251. 271.

    Naturvårdsverket & Jordbruksverket 2019. Minskade utsläpp av växthusgaser från jordbruket med ökad produktion? Scenarier till 2045 för utsläpp och upptag av växthusgaser inom jordbrukssektorn.

    http://www.naturvardsverket.se/upload/sa-mar-miljon/klimat-och-luft/klimat/tre-satt-att-berakna-klimatpaverkande-utslapp/Jordbruksscenarier-2045.pdf
  252. 272.

    Intergovernmental Panel on Climate Change. (2014). Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    https://doi.org/10.1017/CBO9781107415324
  253. 273.

    Díaz S, Settele J, Brondízio ES, et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science. 2019;366(6471):eaax3100.

    https://doi.org/10.1126/science.aax3100
  254. 274.

    BENGTSSON, J., AHNSTRÖM, J. and WEIBULL, A.‐C. (2005), The effects of organic agriculture on biodiversity and abundance: a meta‐analysis. Journal of Applied Ecology, 42: 261-269.

    https://doi.org/10.1111/j.1365-2664.2005.01005.x
  255. 275.

    HLPE 2015. Water for food security and nutrition. Rome: Food and Agriculture Organization of the UN.

    http://www.fao.org/3/a-av045e.pdf
  256. 276.

    HAV 2020. Jordbruk och vattenmiljö. Havs och Vattenmyndigheten.

    https://www.havochvatten.se/hav/fiske--fritid/miljopaverkan/jordbruk.html
  257. 277.

    Jordbruksverket 2020. Övergödning och läckage av växtnäring.

    https://jordbruksverket.se/jordbruket-miljon-och-klimatet/overgodning-och-lackage-av-vaxtnaring
  258. 280.

    Høøk Presto M, Algers B, Persson E, Andersson HK (2009) Different roughages to organic growing/finishing pigs - Influence on activity behaviour and social interactions. Livest Sci 123(1):55-62. 10.1016/j.livsci.2008.10.007

    https://doi.org/10.1016/j.livsci.2008.10.007
  259. 280.

    Kallabis KE, Kaufmann O (2012) Effect of a high-fibre diet on the feeding behaviour of fattening pigs. Archiv Fur Tierzucht-Arch Anim Breed 55(3):272-284

    http://doi.org/10.5194/aab-55-272-2012
  260. 282.

    Jensen MB, Studnitz M, Pedersen LJ (2010) The effect of type of rooting material and space allowance on exploration and abnormal behaviour in growing pigs. Appl Anim Behav Sci 123(3):87-92. 10.1016/j.applanim.2010.01.002

    https://doi.org/10.1016/j.applanim.2010.01.002
  261. 283.

    Holinger M, Früh B, Stoll P, Graage R, Wirth S, Bruckmaier R, Prunier A, Kreuzer M, Hillmann E (2018a) Chronic intermittent stress exposure and access to grass silage interact differently in their effect on behaviour, gastric health and stress physiology of entire or castrated male growing-finishing pigs. Physiol Behav 195:58-68.

    https://doi.org/10.1016/j.physbeh.2018.07.019
  262. 284.

    Presto M, Rundgren M, Wallenbeck A (2013) Inclusion of grass/clover silage in the diet of growing/finishing pigs - Influence on pig time budgets and social behaviour. Acta Agr ScandA-An 63(2):84-92.

    https://doi.org/10.1080/09064702.2013.793734
  263. 285.

    Presto Åkerfeldt M, Nihlstrand J, Neil M, Lundeheim N, Andersson HK, Wallenbeck A (2019) Chicory and red clover silage in diets to finishing pigs—influence on performance, time budgets and social interactions. Organic Agriculture 9(1):127-138

    https://doi.org/10.1007/s13165-018-0216-z
  264. 286.

    Botermans JAM, Olsson AC, Andersson M, Bergsten C, Svendsen J (2015) Performance, health and behaviour of organic growing-finishing pigs in two different housing systems with or without access to pasture. Acta Agr Scand A-An 65(3):158-167.

    https://doi.org/10.1080/09064702.2016.1158308
  265. 287.

    Holinger M, Früh B, Stoll P, Kreuzer M, Hillmann E (2018b) Grass silage for growing-finishing pigs in addition to straw bedding: Effects on behaviour and gastric health. Livest Sci 218:50-57.

    https://doi.org/10.1016/j.livsci.2018.10.012
  266. 288.

    Cornale P, Macchi E, Miretti S, Renna M, Lussiana C, Perona G, Mimosi A (2015) Effects of stocking density and environmental enrichment on behavior and fecal corticosteroid levels of pigs under commercial farm conditions. J Vet Behav 10(6):569-576.

    https://doi.org/10.1016/j.jveb.2015.05.002
  267. 289.

    Terlouw C, Berne A, Astruc T (2009) Effect of rearing and slaughter conditions on behaviour, physiology and meat quality of Large White and Duroc-sired pigs. Livest Sci 122(2):199-213

    https://doi.org/10.1016/j.livsci.2008.08.016
  268. 290.

    Bohnenkamp AL, Traulsen I, Meyer C, Muller K, Krieter J (2013) Comparison of growth performance and agonistic interaction in weaned piglets of different weight classes from farrowing systems with group or single housing. Animal 7(2):309-315.

    https://doi.org/10.1017/s1751731112001541
  269. 291.

    van Nieuwamerongen SE, Bolhuis JE, van der Peet-Schwering CMC, Soede NM (2014) A review of sow and piglet behaviour and performance in group housing systems for lactating sows. Animal 8(3):448-460

    https://doi.org/10.1017/S1751731113002280
  270. 292.

    van Nieuwamerongen SE, Soede NM, van der Peet-Schwering CMC, Kemp B, Bolhuis JE (2015) Development of piglets raised in a new multi-litter housing system vs. conventional single-litter housing until 9 weeks of age. J Anim Sci 93(11):5442-5454

    https://doi.org/10.2527/jas.2015-9460
  271. 293.

    Verdon M, Morrison RS, Hemsworth PH (2016) Rearing piglets in multi-litter group lactation systems: Effects on piglet aggression and injuries post-weaning. Appl Anim Behav Sci 183:35-41

    https://doi.org/10.1016/j.applanim.2016.05.008
  272. 294.

    Verdon M, Morrison RS, Rault JL (2019) Group lactation from 7 or 14 days of age reduces piglet aggression at weaning compared to farrowing crate housing. Animal 13(10):2327-2335.

    https://doi.org/10.1017/S1751731119000478
  273. 295.

    Thomsson O, Sjunnesson Y, Magnusson U, Eliasson-Selling L, Wallenbeck A, Bergqvist AS (2016) Consequences for Piglet Performance of Group Housing Lactating Sows at One, Two, or Three Weeks Post-Farrowing. PLoS One 11(6).

    https://doi.org/10.1371/journal.pone.0156581
  274. 296.

    Werner C, Schubbert A, Schrodl W, Kruger M, Sundrum A (2014) Effects of feeding different roughage components to sows in gestation on bacteriological and immunological parameters in colostrum and immune response of piglets. Arch Anim Nutr 68(1):29-41

    https://doi.org/10.1080/1745039x.2013.876184
  275. 297.

    Turpin DL, Langendijk P, Plush K, Pluske JR (2017) Intermittent suckling with or without co-mingling of non-littermate piglets before weaning improves piglet performance in the immediate post-weaning period when compared with conventional weaning. J Anim Sci Biotech 8(14).

    https://doi.org/10.1186/s40104-017-0144-x
  276. 298.

    Dippel S, Leeb C, Bochicchio D, Bonde M, Dietze K, Gunnarsson S, Lindgren K, Sundrum A, Wiberg S, Winckler C, Prunier A (2014) Health and welfare of organic pigs in Europe assessed with animal-based parameters. Organic Agriculture 4 (2):149-161.

    https://doi.org/10.1007/s13165-013-0041-3
  277. 299.

    Weissensteiner R, Baldinger L, Hagmuller W, Zollitsch W (2018) Effects of two 100% organic diets differing in proportion of home-grown components and protein concentration on performance of lactating sows. Livest Sci 214:211-218.

    https://doi.org/10.1016/j.livsci.2018.06.006
  278. 300.

    Szulc K (2011) Welfare of pigs in organic production system - assumptions and their implementation. J Res Appl Agric Engineer 56(4):143-147

  279. 301.

    Prunier A, Dippel S, Bochicchio D, Edwards S, Leeb C, Lindgren K, Sundrum A, Dietze K, Bonde M (2014) Characteristics of organic pig farms in selected European countries and their possible influence on litter size and piglet mortality. Organic Agriculture 4(2):163-173.

    https://doi.org/10.1007/s13165-013-0040-4
  280. 302.

    Lindgren Y, Lundeheim N, Boqvist S, Magnusson U (2013) Reproductive performance in pigs reared under organic conditions compared with conventionally reared pigs. Acta Vet Scand 55:4.

    https://doi.org/10.1186/1751-0147-55-33
  281. 303.

    Früh B, Bochicchio D, Edwards S, Hegelund L, Leeb C, Sundrum A, Werne S, Wiberg S, Prunier A (2014) Description of organic pig production in Europe. Organic Agriculture 4(2):83-92.

    https://doi.org/10.1007/s13165-013-0056-9
  282. 304.

    Westin R, Holmgren N, Hultgen J, Ortman K, Linder A, Algers B (2015) Post-mortem findings and piglet mortality in relation to strategic use of straw at farrowing. Prev Vet Med 119:141–152.

    http://dx.doi.org/10.1016/j.prevetmed.2015.02.023
  283. 305.

    Sundrum A, Goebel A, Bochicchio D, Bonde M, Bourgoin A, Cartaud G, Dietze K, Dippel S, Gunnarsson S, Hegelund L, Leeb C, Lindgren K, Prunier A, Wiberg S (2010) Health status in organic pig herds in Europe. Proc of the 21st Int Pig Veterinary Society (IPVS) Congress, July 18-21, 2010, Vancouver, Canada, p. 277.

  284. 306.

    Leeb C, Rudolph G, Bochicchio D, Edwards S, Fruh B, Holinger M, Holmes D, Illmann G, Knop D, Prunier A, Rousing T, Winckler C, Dippel S (2019) Effects of three husbandry systems on health, welfare and productivity of organic pigs. Animal:1-9.

    https://doi.org/10.1017/s1751731119000041
  285. 307.

    Wallenbeck A, Gustafson G, Rydhmer L (2009a) Sow performance and maternal behaviour in organic and conventional herds, Acta Agr Scand A-An 59(3):181-191.

    https://doi.org/10.1080/09064700903307824
  286. 308.

    Alban L, Petersen JV, Busch ME (2015) A comparison between lesions found during meat inspection of finishing pigs raised under organic/free-range conditions and conventional, indoor conditions. Porc Health Manag 1, 4

    https://doi.org/10.1186/2055-5660-1-4
  287. 309.

    Kongsted H, Sørensen JT (2017) Lesions found at routine meat inspection on finishing pigs are associated with production system. Vet J 223:25-30.

    https://doi.org/10.1016/j.tvjl.2017.04.016
  288. 310.

    Hushållningssällskapet 2014. Slaktkropparnas kvalitet i ekologisk uppfödning 2012.

    https://s3.eu-north-1.amazonaws.com/ekofakta/uploads/files/26b76108-df0c-44bf-955f-a1188ede0cc3.pdf
  289. 311.

    Simoneit C, Bender S, Koopmann R (2012) Quantitative and qualitative overview and assessment of literature on animal health in organic farming between 1991 and 2011-Part II: pigs, poultry, others. Landbauforschung-Ger 62(3):105-110

    https://www.semanticscholar.org/paper/Quantitative-and-qualitative-overview-and-of-on-in-Simoneit-Bender/6b34e775ba807ac2ed5b8f7c6c374cf009ee7f08
  290. 312.

    Wallenbeck, A., Eliasson, C., Lundeheim, N (2020) Leg health, growth and carcass characteristics in growing-finishing pigs of two different genotypes reared on Swedish organic farms. Organic Agriculture 10:97–103.

    https://doi.org/10.1007/s13165-019-00260-8
  291. 313.

    Etterlin PE, Morrison DA, Osterberg J, Ytrehus B, Heldmer E, Ekman S (2015) Osteochondrosis, but not lameness, is more frequent among free-range pigs than confined herd-mates. Acta Vet Scand 57:10.

    https://doi.org/10.1186/s13028-015-0154-7
  292. 314.

    Etterlin PE, Ytrehus B, Lundeheim N, Heldmer E, Osterberg J, Ekman S (2014) Effects of free-range and confined housing on joint health in a herd of fattening pigs. BMC Vet Res 10.

    https://doi.org/10.1186/s12917-014-0208-5
  293. 315.

    Katakam KK, Thamsborg SM, Dalsgaard A, Kyvsgaard NC, Mejer H (2016) Environmental contamination and transmission of Ascaris suum in Danish organic pig farms. Parasites Vectors 9:12.

    https://doi.org/10.1186/s13071-016-1349-0
  294. 317.

    Roepstorff A, Mejer H, Nejsum P, Thamsborg S.M (2011) Helminth parasites in pigs: New challenges in pig production and current research highlights. Vet Parasitol 180:72– 81.

    https://doi.org/10.1016/j.vetpar.2011.05.029
  295. 318.

    Knage-Rasmussen KM, Houe H, Rousing T, Sorensen JT (2014) Herd- and sow-related risk factors for lameness in organic and conventional sow herds. Animal 8(1):121-127.

    https://doi.org/10.1017/s1751731113001900
  296. 320.

    Gård & Djurhälsan 2017. Produktionsinriktning – Produktionsmodell.

    https://www.gardochdjurhalsan.se/wp-content/uploads/2018/05/Att-valja-produktionsinriktning.pdf
  297. 324.

    Dokumentation från seminarium anordnat av EPOK, november 2012. – Utevistelse och parasiter i ekologisk husdjursproduktion

    https://www.slu.se/centrumbildningar-och-projekt/epok-centrum-for-ekologisk-produktion-och-konsumtion/seminarier/seminariedokumentation/seminarier-2011-2013/det-ar-inne-att-vara-ute/
  298. 325.

    Fall, N., Emanuelson, U., Martinsson, K. & Jonsson, S. (2008). Udder health at a Swedish research farm with both organic and conventional dairy cow management. Preventive Veterinary Medicine, 86, 186-195.

    https://doi.org/10.1016/j.prevetmed.2007.07.003
  299. 327.

    Bergman MA, Richert RM, Cicconi-Hogan KM, Gamroth MJ, Schukken YH, Stiglbauer KE, Ruegg PL (2014) Comparison of selected animal observations and management practices used to assess welfare of calves and adult dairy cows on organic and conventional dairy farms. J Dairy Sci 97(7):4269-4280.

    https://doi.org/10.3168/jds.2013-7766
  300. 328.

    Langford FM, Rutherford KMD, Sherwood L, Jack MC, Lawrence AB, Haskell MJ (2011) Behavior of cows during and after peak feeding time on organic and conventional dairy farms in the United Kingdom J Dairy Sci 94:746–753

    https://doi.org/10.3168/jds.2010-3309
  301. 329.

    Richert RM, Cicconi KM, Gamroth MJ, Schukken YH, Stiglbauer KE, Ruegg PL (2013) Risk factors for clinical mastitis, ketosis, and pneumonia in dairy cattle on organic and small conventional farms in the United States. J Dairy Sci 96(7):4269-4285.

    https://doi.org/10.3168/jds.2012-5980
  302. 330.

    Levison LJ, Miller-Cushon EK, Tucker AL, Bergeron R, Leslie KE, Barkema HW, DeVries TJ (2016) Incidence rate of pathogen-specific clinical mastitis on conventional and organic Canadian dairy farms. J Dairy Sci 99(2):1341-1350.

    https://doi.org/10.3168/jds.2015-9809
  303. 331.

    Rodriguez-Bermudez R, Mir, a M, Orjales I, Rey-Crespo F, Munoz N, Lopez-Alonso M (2017) Holstein-Friesian milk performance in organic farming in North Spain: Comparison with other systems and breeds. Span J Agric Res 15(1):10.

    https://doi.org/10.5424/sjar/2017151-10037
  304. 332.

    Slagboom M, Kargo M, Edwards D, Sørensen AC, Thomasen JR, Hjortø L (2016) Organic dairy farmers put more emphasis on production traits than conventional farmers. J Dairy Sci 99(12): 9845-9856.

    https://doi.org/10.3168/jds.2016-11346
  305. 333.

    Sundberg T, Berglund B, Rydhmer L, Strandberg E (2009) Fertility, somatic cell count and milk production in Swedish organic and conventional dairy herds. Livest Sci 126(1):176-182.

    http://dx.doi.org/10.1016/j.livsci.2009.06.022
  306. 334.

    Valle PS, Lien G, Flaten O, Koesling M, Ebbesvik M (2007) Herd health and health management in organic versus conventional dairy herds in Norway. Livest Sci 112:123-132.

    https://doi.org/10.1016/j.livsci.2007.02.005
  307. 335.

    Fall N, Forslund K, Emanuelson U (2008) Reproductive performance, general health, and longevity of dairy cows at a Swedish research farm with both organic and conventional production. Livest Sci 118(1):11-19.

    https://doi.org/10.1016/j.livsci.2008.01.017
  308. 336.

    Poizat A, Bonnet-Beaugrand F, Rault A, Fourichon C, Bareille N (2017) Antibiotic use by farmers to control mastitis as influenced by health advice and dairy farming systems. Prev Vet Med 146:61-72.

    https://doi.org/10.1016/j.prevetmed.2017.07.016
  309. 337.

    Silverlås C, Emanuelson U, de Verdier K, Björkman C (2009) Prevalence and associated management factors of Cryptosporidium shedding in 50 Swedish dairy herds. Prev Vet Med 90(3):242-253.

    https://doi.org/10.1016/j.prevetmed.2009.04.006
  310. 338.

    Höglund J, Dahlstrom F, Engstrom A, Hessle A, Jakubek EB, Schnieder T, Strube C, Sollenberg S (2010) Antibodies to major pasture borne helminth infections in bulk-tank milk samples from organic and nearby conventional dairy herds in south-central Sweden. Vet Parasitol 171(3):293-299.

    https://doi.org/10.1016/j.vetpar.2010.04.002
  311. 339.

    Blanco-Penedo I, Fall N, Emanuelson U (2012a) Effects of turning to 100% organic feed on metabolic status of Swedish organic dairy cows. Livest Sci 143(2):242-248.

    https://doi.org/10.1016/j.livsci.2011.09.023
  312. 340.

    Blanco-Penedo I, Lopez-Alonso M, Shore RF, Miranda M, Castillo C, Hernandez J, Benedito JL (2012b) Evaluation of organic, conventional and intensive beef farm systems: health, management and animal production. Animal 6(9):1503-1511.

    https://doi.org/10.1017/S1751731112000298
  313. 341.

    Fall N, Emanuelson U (2009) Milk yield, udder health and reproductive performance in Swedish organic and conventional dairy herds. J Dairy Res 76(4):402-410.

    https://doi.org/10.1017/S0022029909990045
  314. 342.

    Bieber A, Wallenbeck A, Leiber F, Fuerst-Waltl B, Winckler C, Gullstr,  P, Walczak J, Wójcik P, Neff AS (2019) Production level, fertility, health traits, and longevity in local and commercial dairy breeds under organic production conditions in Austria, Switzerland, Poland, and Sweden. J Dairy Sci 102(6):5330-5341.

    https://doi.org/10.3168/jds.2018-16147
  315. 343.

    Rutherford KMD, Langford FM, Jack MC, Sherwood L, Lawrence AB, Haskell MJ (2009) Lameness prevalence and risk factors in organic and non-organic dairy herds in the United Kingdom. Vet J 180(1):95-105.

    https://doi.org/10.1016/j.tvjl.2008.03.015
  316. 344.

    Sjöstrom K, Fall N, Blanco-Penedo I, Duval JE, Krieger M, Emanuelson U (2018) Lameness prevalence and risk factors in organic dairy herds in four European countries. Livest Sci 208:44-50.

    https://doi.org/10.1016/j.livsci.2017.12.009
  317. 345.

    Jensen, P. 1988. Maternal behaviour and mother—Young interactions during lactation in free-ranging domestic pigs. Applied Animal Behaviour Science 20 (3-4), 297-308.

    https://doi.org/10.1016/0168-1591(88)90054-8
  318. 346.

    Wientjes, J.G.M., Soede, N.M., van der Peet-Schwering, C.M.C., van den Brand, H., Kemp, B. 2012. Piglet uniformity and mortality in large organic litters: Effects of parity and pre-mating diet composition. Livestock Science 144, 218-229. 

    https://doi.org/10.1016/j.livsci.2011.11.018
  319. 347.

    Höglund, J., Svensson, C., Hessle, A.. 2001. A field survey on the status of internal parasites in calves on organic dairy farms in southwestern Sweden. Veterinary Parasitology 99 (2), 113-128.

    https://doi.org/10.1016/S0304-4017(01)00452-6
  320. 348.

    Nyman, A.-K., Ekman, T., Emanuelson, U., Gustafsson, A.H., Holtenius, K., Persson Waller, K., Hallén Sandgren, C. 2007. Risk factors associated with the incidence of veterinary-treated clinical mastitis in Swedish dairy herds with a high milk yield and a low prevalence of subclinical mastitis. Preventive Veterinary Medicine 78 (2), 142-160. 

    https://doi.org/10.1016/j.prevetmed.2006.10.002
  321. 349.

    Elwinger, K., M. Tufvesson, G. Lagerkvist, and R. Tauson. 2008. Feeding layers of different genotypes in organic feed environments. Br. Poult. Sci. 49(6):654-665. (Article)

    https://doi.org/10.1080/00071660802491519
  322. 350.

    SVA 2020. Parasiter hos fjäderfän i Sverige.

     

    https://www.sva.se/produktionsdjur/fjaderfa/parasiter/
  323. 353.

    Bozakova N, Gerzilov V, Popova-Ralcheva S, Sredkova V (2011) Welfare assessment of three chicken breeds (Gallus gallus domesticus) under different production. Biotechn Anim Husb 27(4):1705-1713

  324. 354.

    Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: a critical re‐examination to identify the true and the false European Journal of Soil Science, 62(1), 42-55.

    https://doi.org/10.1111/j.1365-2389.2010.01342.x
  325. 355.

    Bestman M, Verwer C, Brenninkmeyer C, Willett A, Hinrichsen LK, Smajlhodzic F, Heerkens JLT, Gunnarsson S, Ferrante V (2017) Feather-pecking and injurious pecking in organic laying hens in 107 flocks from eight European countries. Anim Welfare 26(3):355-363.

    https://doi.org/10.7120/09627286.26.3.355
  326. 356.

    Jung L, Niebuhr K, Hinrichsen LK, Gunnarsson S, Brenninkmeyer C, Bestman M, Heerkens J, Ferrari P, Knierim U (2019) Possible risk factors for keel bone damage in organic laying hens. Animal 13(10): 2356-2364.

    https://doi.org/10.1017/S175173111900003X
  327. 357.

    Rodenburg TB, Van Krimpen MM, De Jong IC, De Haas EN, Kops MS, Riedstra BJ, Nordquist RE, Wagenaar JP, Bestman M, Nicol CJ (2013) The prevention and control of feather pecking in laying hens: Identifying the underlying principles. World's Poult Sci J 69(2):361-374.

    https://doi.org/10.1017/S0043933913000354
  328. 358.

    Richards GJ, Wilkins LJ, Knowles TG, Booth F, Toscano MJ, Nicol CJ, Brown SN (2012) Pop hole use by hens with different keel fracture status monitored throughout the laying period. Vet Rec 170(19)

    https://doi.org/10.1136/vr.100489
  329. 359.

    Jansson DS, Nyman A, Vagsholm I, Christensson D, Goransson M, Fossum O, Hoglund J (2010) Ascarid infections in laying hens kept in different housing systems. Avian Pathol 39(6):525-532.

    https://doi.org/10.1080/03079457.2010.527923
  330. 360.

    Hinrichsen LK, Labouriau R, Engberg RM, Knierim U, Sorensen JT (2016) Helminth infection is associated with hen mortality in Danish organic egg production. Vet Rec 179(8):4.

    https://doi.org/10.1136/vr.103614
  331. 361.

    Thapa S, Hinrichsen LK, Brenninkmeyer C, Gunnarsson S, Heerkens JLT, Verwer C, Niebuhr K, Willett A, Grilli G, Thamsborg SM, Sorensen JT, Mejer H (2015) Prevalence and magnitude of helminth infections in organic laying hens (Gallus gallus domesticus) across Europe. Vet Parasitol 214(1):118-124.

    https://doi.org/10.1016/j.vetpar.2015.10.009
  332. 362.

    Eriksson M, Waldenstedt L, Engstrom B, Elwinger K (2009) Protein supply in organic broiler diets. Acta Agr Scand A-An 59(4):211-219.

    https://doi.org/10.1080/09064700903358256
  333. 363.

    Rezaei M, Yngvesson J, Gunnarsson S, Jönsson L, Wallenbeck A (2018) Feed efficiency, growth performance, and carcass characteristics of a fast- and a slower-growing broiler hybrid fed low- or high-protein organic diets. Organic Agriculture 8(2):121-128.

    https://doi.org/10.1007/s13165-017-0178-6
  334. 364.

    Wallenbeck A, Wilhelmsson S, Jönsson L, Gunnarsson S, Yngvesson J (2017) Behaviour in one fast-growing and one slower-growing broiler (Gallus gallus domesticus) hybrid fed a high- or low-protein diet during a 10-week rearing period. Acta Agr Scand A-An66(3):1-9.

    https://doi.org/10.1080/09064702.2017.1303081
  335. 365.

    Castellini C, Mugnai C, Moscati L, Mattioli S, Amato MG, Mancinelli AC, Bosco Ad (2016) Adaptation to organic rearing system of eight different chicken genotypes: behaviour, welfare and performance. Ital J Anim Sci 15(1):37-46.

    https://doi.org/10.1080/1828051x.2015.1131893
  336. 366.

    Gouveia KG, Vaz-Pires P, da Costa PM (2009) Welfare assessment of broilers through examination of haematomas, foot-pad dermatitis, scratches and breast blisters at processing. Anim Welfare 18(1):43-48

    https://www.cabdirect.org/cabdirect/abstract/20103007537
  337. 367.

    Lund VP, Nielsen LR, Oliveira ARS, Christensen JP (2017) Evaluation of the Danish footpad lesion surveillance in conventional and organic broilers: Misclassification of scoring. Poult Sci 96(7):2018-2028.

    https://doi.org/10.3382/ps/pex024
  338. 368.

    Fanatico AC, Pillai PB, Hester PY, Falcone C, Mench JA, Owens CM, Emmert JL (2008) Performance, livability, and carcass yield of slow- and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poult Sci 87(6):1012-1021.

    https://doi.org/10.3382/ps.2006-00424
  339. 369.

    Wilhelmsson S, Yngvesson J, Jonsson L, Gunnarsson S, Wallenbeck A (2019) Welfare Quality ® assessment of a fast-growing and a slower-growing broiler hybrid, reared until 10 weeks and fed a low-protein, high-protein or mussel-meal diet. Livest Sci 219:71-79.

    https://doi.org/10.1016/j.livsci.2018.11.010
  340. 370.

    Tahamtani FM, Hinrichsen LK, Riber AB (2018) Welfare assessment of conventional and organic broilers in Denmark, with emphasis on leg health. Vet Rec 183(6):7.

    https://doi.org/10.1136/vr.104817
  341. 371.

    Newberry RC (2017) Chapter 9 - Commercial Free-Range Egg Production Practices. In: Hester PY (ed) Egg Innovations and Strategies for Improvements. Academic Press, San Diego, pp 89-102.

    https://doi.org/10.1016/B978-0-12-800879-9.00009-3
  342. 372.

    Wnuk-Gnich A, Lukasiewicz M, Niemiec J, Mroczek-Sosnowska N (2016) The effect of a housing system on production results and slaughter analysis of slow-growing chickens. Annals of Warsaw University of Life Sciences - SGGW, Anim Sci 55:309-318

    https://www.cabdirect.org/cabdirect/abstract/20173062924
  343. 373.

    Wierup M, Wahlström H, Lahti E, Eriksson H, Jansson DS, Odelros Å, Ernholm L (2017) Occurrence of Salmonella spp.: a comparison between indoor and outdoor housing of broilers and laying hens. Acta Vet Scand 59(1):13.

    https://doi.org/10.1186/s13028-017-0281-4
  344. 374.

    Yngvesson J, Wedin M, Gunnarsson S, Jonsson L, Blokhuis H, Wallenbeck A (2017) Let me sleep! Welfare of broilers (Gallus gallus domesticus) with disrupted resting behaviour. Acta Agr Scand A-An 67(3-4):123-133.

    https://doi.org/10.1080/09064702.2018.1485729
  345. 375.

    J Sanders & J Hess (eds) 2019. Leistungen des ökologischen Landbaus für Umwelt und Gesellschaft, Thünen Report 65, Johann Heinrich von Thünen-Institut.  

    https://doi.org/10.3220/REP1547040572000
  346. 376.

    Bauer A and Sweers W. 2015. Status of nutrient bookkeeping in the Baltic Sea countries. Report No. (UBA-FB) 002225. The German Environment Agency. Umweltbundesamt Wörlitzer Platz 1, 06844 Dessau-Roßlau. 68 pages.

    https://www.umweltbundesamt.de/en/topics/status-of-nutrient-bookkeeping-in-the-baltic-sea
  347. 377.

    De Notaris C, Rasmussen J, Sørensen P & Olesen JR 2018. Nitrogen leaching: A crop rotation perspective on the effects of N surplus, field management and use of catch crops. Agriculture, Ecosystems & Environment 255, 1-11.

    https://doi.org/10.1016/j.agee.2017.12.009
  348. 378.

    Askegaard M, Olesen JE, Rasmussen IA, Kristensen K (2011) Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management. Agric Ecosyst Environ 142:149–160.

    https://doi.org/10.1016/j.agee.2011.04.014
  349. 379.

    Plaza-Bonilla D, Nolot J-M, Raffaillac D, Justes E (2015) Cover crops mitigate nitrate leaching in cropping systems including grain legumes: field evidence and model simulations. Agric Ecosyst Environ 212:1–12.  

    https://doi.org/10.1016/j.agee.2015.06.014
  350. 380.

    S Hansen et al 2019. "Reviews and syntheses: Review of causes and sources of N2O emissions and NO3 leaching from organic arable crop rotations", Biogeosciences 16:2795-2819. 

    https://doi.org/10.5194/bg-16-2795-2019
  351. 381.

    K Mondelaers et al 2009. "A meta-analysis of the differences in environmental impacts between organic and conventional farming", British Food Journal 111:1098-1119.

    https://doi.org/10.1108/00070700910992925
  352. 382.

    R Einarsson et al 2018. "Nitrogen flows on organic and conventional dairy farms: a comparison of three indicators", Nutrient Cycling in Agroecosystems 110:25-38.

    https://doi.org/10.1007/s10705-017-9861-y
  353. 383.

    Gyllebo 2019. Produkter, Gyllebo Gödning AB.

    http://www.gyllebogodning.se/
  354. 384.

    Ekoväx 2019. Ekologiskt gödsel, Ekoväx i Norden AB.

    https://ekovax.se/ekologiskt-godsel/
  355. 385.

    G Torstensson et al 2006. "Nutrient Use Efficiencies and Leaching of Organic and Conventional Cropping Systems in Sweden", Agronomy Journal 98:603-615.

    https://doi.org/10.2134/agronj2005.0224
  356. 386.

    E Salomon et al 2007. "Outdoor pig fattening at two Swedish organic farms. Spatial and temporal load of nutrients and potential environmental impact", Agriculture, Ecosystems and Environment 121:407-418.

    https://doi.org/10.1016/j.agee.2006.11.017
  357. 387.

    J Eriksen et al 2002. "The fate of nitrogen in outdoor pig production", Agronomie 22:863-867.

    https://doi.org/10.1051/agro:2002045
  358. 388.

    B Carlsson et al 2009. Livscykelanalys (LCA) av svenskt ekologiskt griskött, SIK-rapport 798 2009, SIK Institutet för livsmedel och bioteknik.

    https://www.diva-portal.org/smash/get/diva2:943583/FULLTEXT01.pdf
  359. 389.

    C Basset-Mens et al 2006. "Implications of Uncertainty and Variability in the Life Cycle Assessment of Pig Production Systems", The International Journal of Life Cycle Assessment 11(5):298-304.

    https://doi.org/10.1065/lca2005.08.219
  360. 390.

    N Halberg et al 2010. "Impact of organic pig production systems on CO2 emission, C sequestration and nitrate pollution", Agronomy for Sustainable Development 30:721-731.

    https://doi.org/10.1051/agro/2010006
  361. 391.

    B Landquist et al 2016. Litteraturstudie av miljöpåverkan från konventionellt och ekologiskt producerade livsmedel. Fokus på studier utförda med livscykelanalysmetodik, Rapport 2-2016, Livsmedelsverket.

    https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2016/miljopaverkan-fran-konventionellt-och-ekologiskt-producerade-livsmedel-nr-2-2016.pdf
  362. 393.

    M A Sutton et al (eds) 2011. European Nitrogen Assessment, European Science Foundation.

    http://www.nine-esf.org/node/360/ENA-Book.html
  363. 394.

    J Rockström et al 2009. "Planetary Boundaries: Exploring the Safe Operating Space for Humanity", Ecology & Society 14(2):32.

    https://www.ecologyandsociety.org/vol14/iss2/art32/
  364. 395.

    W de Vries et al 2013. "Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts", Current Opinion in Environmental Sustainability 5:392–402.

    https://doi.org/10.1016/j.cosust.2013.07.004
  365. 396.

    Liu J, Ma, K, Ciais P % Polasky S 2016. Reducing human nitrogen use for food production. Scientific reports 6, Article number: 20104. 

    https://www.nature.com/articles/srep30104
  366. 397.

    L Lassaletta et al 2014. "50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland", Environmental Research Letters 9:105011.

    https://doi.org/10.1088/1748-9326/9/10/105011
  367. 398.

    SCB 2018. Kväve- och fosforbalanser för jordbruksmark 2016, Statistiska meddelanden MI 40 SM 1801, Statistiska Centralbyrån.

    https://www.scb.se/publikation/33799
  368. 399.

    Fölster J, Kyllmar K, Wallin M & Hellgren S 2012. Kväve- och fosfortrender i jordbruksvattendrag. Har åtgärderna gett effekt? Rapport 2012:1, Institutionen för vatten och miljö, SLU.

    https://pub.epsilon.slu.se/13165/1/folster_j_etal_160314.pdf
  369. 400.

    Caroprese M (2008) Sheep housing and welfare. Small Ruminant Res 76(1):21-25

    https://doi.org/10.1016/j.smallrumres.2007.12.015
  370. 401.

    Napolitano F, De Rosa G, Ferrante V, Grasso F, Braghieri A (2009) Monitoring the welfare of sheep in organic and conventional farms using an ANI 35 L derived method. Small Ruminant Res 83(1-3):49-57.

    https://doi.org/10.1016/j.smallrumres.2009.04.001
  371. 402.

    Hansen I (2015) Behavioural indicators of sheep and goat welfare in organic and conventional Norwegian farms. Acta Agr Scand A-An 65(1):55-61.

    https://doi.org/10.1080/09064702.2015.1050447
  372. 403.

    Malissiova E, Papadopoulos T, Kyriazi A, Mparda M, Sakorafa C, Katsioulis A, Katsiaflaka A, Kyritsi M, Zdragas A, Hadjichristodoulou C (2017) Differences in sheep and goats milk microbiological profile between conventional and organic farming systems in Greece. J Dairy Res 84(2):206-213.

    https://doi.org/10.1017/s0022029917000103
  373. 404.

    Höglund J, Elmahalawy ST, Halvarsson P, Gustafsson K (2019) Detection of Haemonchus contortus on sheep farms increases using an enhanced sampling protocol combined with PCR based diagnostics. Vet Parasitol X 2:100018.

    https://doi.org/10.1016/j.vpoa.2019.100018
  374. 405.

    Cabaret J, Nicourt C (2009) Sanitary problems in organic farming: facts, conceptions and practices. Prod Anim 22(3):235-243

    https://www.researchgate.net/publication/287538122_Sanitary_problems_in_organic_farming_Facts_conceptions_and_practises
  375. 406.

    Pilarczyk B, Balicka-Ramisz A, Ramisz A, Binerowska B (2008) Comparison of internal parasite invasions in sheep on ecological and conventional farms. Ann Anim Sci 8(1):89-93

    https://www.researchgate.net/publication/305875565_A_comparison_of_the_prevalence_of_gastrointestinal_parasites_in_sheep_from_the_indoor_and_outdoor_management_system
  376. 407.

    Mederos A, Fernandez S, VanLeeuwen J, Peregrine AS, Kelton D, Menzies P, LeBoeuf A, Martin R (2010) Prevalence and distribution of gastrointestinal nematodes on 32 organic and conventional commercial sheep farms in Ontario and Quebec, Canada (2006-2008). Vet Parasitol 170(3-4):244-252.

    https://doi.org/10.1016/j.vetpar.2010.02.018
  377. 408.

    Kern G, Traulsen I, Stamer E, Kemper N, Krieter J (2014) Effects and risk factors influencing longevity and animal health in sheep on organic farms: Development of preventive measures. Zuchtungskunde 86(4):260-273

    https://doi.org/
  378. 409.

    Gård och Djurhälsan 2020. Första lammhjälpen. Del 3: Omhändertagande av nedkylda lamm.

    https://www.gardochdjurhalsan.se/forsta-lammhjalpen-del-3-omhandertagande-av-nedkylda-lamm/
  379. 410.

    Winter JR, Kaler J, Ferguson E, KilBride AL, Green LE (2015) Changes in prevalence of, and risk factors for, lameness in random samples of English sheep flocks: 2004-2013. Prev Vet Med 122(1):121-128.

    https://doi.org/10.1016/j.prevetmed.2015.09.014
  380. 411.

    Bernes G, Stengarde L (2012) Sheep fed only silage or silage supplemented with concentrates. 1. Effects on ewe performance and blood metabolites. Small Ruminant Res 102(2):108-113.

    https://doi.org/10.1016/j.smallrumres.2011.09.001
  381. 412.

    Dickins A, Clark CCA, Kaler J, Ferguson E, O'Kane H, Green LE (2016) Factors associated with the presence and prevalence of contagious ovine digital dermatitis: A 2013 study of 1136 random English sheep flocks. Prev Vet Med 130:86-93.

    https://doi.org/10.1016/j.prevetmed.2016.06.009
  382. 413.

    Jordbruksverket 2019. Åtgärder för minskade växtnäringsförluster från jordbruket.

    https://www2.jordbruksverket.se/download/18.643c21e416b9421f4f8a6b91/1561709797248/ovr125v3.pdf
  383. 414.

    Bleken, M. A., Steinshamn H., Hansen, S. 2005. High nitrogen costs of dairy production in Europe: Worsened by intensification. Ambio Vol. 34, No. 8, 598-606.

    https://www.researchgate.net/publication/7256024_High_Nitrogen_Costs_of_Dairy_Production_in_Europe_Worsened_by_Intensification
  384. 415.

    SCB 2018.  Kväve- och fosforbalanser för jordbruksmark 2016. Statistiska meddelanden Mi 40 SM 1801, Statistiska centralbyrån.

    https://www.scb.se/contentassets/6707adf4535a475aa8d44526ec390ecd/mi1004_2016a01_sm_mi40sm1801.pdf
  385. 416.

    Öborn I, Edwards AC, Witter E, Oenema O, Withers PJA, Nilsson SI & Richert Stinzing A 2003.Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context, European Journal of Agronomy  20, 211-225. 

    https://doi.org/10.1016/S1161-0301(03)00080-7
  386. 417.

    Smith KA, Jackson DR, Misselbrook TH, Pain BF & Johnson RA 2000. Reduction of Ammonia Emission by Slurry Application Techniques, Journal of Agricultural Engineering Research 77(3), 277-287.

    https://doi.org/10.1006/jaer.2000.0604
  387. 418.

    Rodhe L, Pell M & Yamulki S 2006. Nitrous oxide, methane and ammonia emissions following slurry spreading on grassland. Soil Use and Management 22, 229–237. 

    https://doi.org/10.1111/j.1475-2743.2006.00043.x
  388. 419.

    Aronsson H, Hansen EM, Thomsen IK, øgaard AF, Känkänen H & Ulén B 2016. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland, Journal of Soil and Water Conservation 71:1. 

    https://doi.org/10.2489/jswc.71.1.41
  389. 420.

    Havs- och Vattenmyndigheten 2019. Ingen övergödning. Fördjupad utvärdering av miljökvalitetsmålen 2019. Rapport 2019:1.

    https://www.havochvatten.se/download/18.e8d4e81168852243c2431c5/1548678825311/rapport-2019-1-ingen-overgodning-fordjupad-utvardering.pdf
  390. 421.

    The Food and Agriculture Organization (FAO), FAOSTAT 2020

    http://www.fao.org/faostat/en/
  391. 422.

    Høøk Presto M, Algers B, Persson E, Andersson HK (2009) Different roughages to organic growing/finishing pigs - Influence on activity behaviour and social interactions. Livest Sci 123(1):55-62. 10.1016/j.livsci.2008.10.007

    https://doi.org/10.1016/j.livsci.2008.10.007